Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Что такое направление электрического тока. Электрический ток. направление и сила тока

Для проведения расчета и анализа электрических цепей необходимо знать не только значения заданных ЭДС, напряжений или токов, но и их направления, так как последние определяют знаки слагаемых в расчетных выражениях. В связи с этим следует напомнить о направлениях токов, напряжений и ЭДС, принятых в физике.

За направление тока принимают направление движения положительных зарядов.

За направление напряжения между какими-либо точками электрической цепи принимают напревление, в котором перемещались бы положительные заряды между этими точками под действием сил электрического поля, т. е. от большего потенциала к меньшему.

За направление ЭДС между выводами источника или активного приемника принимают направление, в котором перемещались бы положительные заряды под действием сил стороннего поля, т. е. от меньшего потенциала к большему.

Так, в электрической цепи рис. 1.1, а потенциал точки а больше потенциала точки b (φа > φb), поэтому напряжение направлено от точки а к точке b, а ЭДС Е - от точки b к точке а.

На участке атb, содержащем пассивные элементы, положительные заряды перемещаются под действием сил электрического поля от большего потенциала к меньшему; направления напряжения и тока на этом участке совпадают. На участке bпа, содержащем источник электрической энергии, положительные заряды перемещаются под действием ЭДС от меньшего потенциала к большему, направление тока на таком участке совпадает с направлением ЭДС и противоположно направлению напряжения.

Для удобства дальнейшего изложения будем называть указанные выше направления действительными направлениями.

Расчет и анализ любых электрических цепей может быть произведен с помощью основных законов электрических цепей: закона Ома, первого и второго законов Кирхгофа. Указанные законы используются также для обоснования различных методов, упрощающих расчет и анализ цепей.

Запись выражении по законам Ома и Кирхгофа, различных методов расчета и анализа, а также расчетных формул производится с учетом определенных направлений как заданных величин (например, ЭДС, напряжений или токов), так и величин, подлежащих определению.

При расчете и анализе электрических цепей направления заданных и искомых величин указывают на схемах стрелками, считают их положительными (Е > 0, U > 0 и I > 0) и поэтому называют положительными направлениями.

За положительные направления заданных и искомых величин при постоянном токе принимают их действительные направления. Если они не очевидны, можно задаться положительными направлениями произвольно, так как от выбора тех или иных положительных направлений зависят лишь знаки искомых величин, а не их значения.

В качестве положительных направлений величин, изменяющих свои действительные направления с течением времени, например при расчете или анализе цепей переменного тока, задают одно из двух возможных их направлений, с учетом которого и производят расчет.

Если в результате расчета или анализа какая-либо из искомых величин оказывается положительной, это означает, что она направлена в действительности так, как показано на схеме стрелкой; отрицательное значение искомой величины указывает на ее противоположное направление. Сказанное относится и к величинам, действительные направления которых с течением времени изменяются.

В книге используется Международная система единиц (СИ), в которой основной единицей ЭДС, напряжения и потенциала является 1 вольт (1 В). Кроме единицы 1 вольт в практике используется единица 1 киловольт (1 кВ = 103 В) и 1 милливольт (1 мВ = 10-3 В).

Основной единицей тока является 1 ампер (1 А). Для тока используются также единицы 1 миллиампер (1 мА = 10-3 А) и 1 микроампер (1 мкА = 10-6 А).

Цели урока:

  • Дидактические: создать условия для усвоения нового учебного материала, используя методику проблемного обучения, научить учащихся, работая в группах, достигать общую цель.
  • Общеобразовательные: В процессе экспериментальной работы выяснить, какие действия способен совершать электрический ток. Познакомить учащихся с техникой безопасности при работе с электрическими приборами. Показать практическую направленность изучаемого материала.
  • Развивающие: Формировать научно-материалистическое мировоззрение, развивать логическое мышление, формировать представление о процессе научного познания. Вырабатывать умение слушать и быть услышанным, прививать культуру умственного труда.

Оборудование: Выпрямители, провода с розетками, ключи, магниты, штативы, подставки, электроды угольные и серебряные, раствор медного купороса, кипячёная вода, резистор, лампочка на подставке, шкала, термометр, гвозди, проволока, проволочный моток, таблица на доске, схемы электрических цепей, карточки, интерактивная доска.

Ход урока

1. Организационный момент.

Сообщение темы и цели урока.

2. Экспресс-опрос по пройденному материалу:

  1. Что такое электрический ток?
  2. Перечислите условия существования электрического тока.
  3. Какие заряженные частицы могут участвовать в возникновении электрического тока?
  4. Что создает и поддерживает длительное время электрическое поле в цепи?
  5. Что такое источник тока?
  6. Каково его назначение?
  7. Какие виды источников тока вам знакомы?
  8. Соотнесите источник тока с энергией, в котором происходит превращение энергии в электрическую энергию.

Класс разбивается на три группы для дальнейшей работы ребят в группах. Каждой группе выдается карточка с заданиями экспериментальной работы (Приложение 1 ) и рабочий лист для ученика (Приложении 2 ).

3. Объяснение нового материала (обратить внимание ребят на рабочие листы):

При объяснении вопроса электрический ток в металлах и направление электрического тока учащиеся заполняют пробелы в предложениях рабочего листа.

1. Электрический ток в металлах.

Металлы в твердом состоянии имеют кристаллическое строение.

В узлах кристаллической решётки металлов расположены положительные ионы, а в пространстве между ними движутся электроны. Электроны не связаны с ядрами своих атомов и движутся беспорядочно, поэтому их называют свободными.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.

Если в металлах создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникает электрический ток. Все электроны начинают двигаться в одном направлении по всей длине проводника, но между ними сохраняется беспорядочное движение (стайка мошкары, движущаяся в сторону ветра).

Электрический ток в металлах – это упорядоченное движение свободных электронов.

Скорость движения самих электронов в проводнике под действием электрического поля мала (несколько мм в секунду).

Но почему при замыкании электрической цепи лампочка загорается практически мгновенно?

Оказывается электрическое поле распространяется с огромной скоростью (близкой к С= 300 000 км/с) по всей длине проводника. Под действием электрического поля в упорядоченное движение приходят свободные е, находящиеся не только в подводящих проводниках, но и в спирали сомой лампы.

Поэтому, когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля (выполнение задания в рабочих листах).

В металлах электрический ток – это упорядоченное движение электронов (отрицательно заряженных частиц). Т.к. в основном мы будем сталкиваться с электрическим током в металлах, разумно было бы предположить, что за направление электрического тока принимают направление движения электронов в электрическом проводнике (т.е. от « – » полюса источника к « + »).

Ток возникает и в электролитах – растворах кислот, солей, щёлочей.

Электрический ток в электролитах – упорядоченное движение ионов обоих знаков.

Но вопрос о направлении электрического тока возник задолго до открытия электронов и ионов. В то время считали, что во всех проводниках могут перемещаться как « + », так и « – » заряды.

За направление электрического тока приняли направление, по которому могли бы двигаться в проводнике «+» заряды, т.е. от «+» к «–», а т.к. это условие было учтено во всех законах и правилах электрического тока, то после открытия электронов и ионов ничего изменять не стали. (Проставить направление тока в схемах рабочего листа).

3. Действия электрического тока.

Рассмотрим 2 проводника. Можно ли по их внешнему виду определить протекает по ним электрический ток или нет? (опыт на демонстрационном столе) Решить эту проблему поможет нам изучение действий электрического тока.

Действиями электрического тока называют те явления, которые наблюдаются при наличии электрического тока в цепи. По этим действиям судят о протекании электрического тока в данной цепи, т.к. нельзя непосредственно наблюдать за движением заряженных частиц в проводнике.

Выясним, какие действия может совершать электрический ток. Для этого разделимся на 4 групп, каждая из которых получит свою карточку с экспериментальным заданием. При работе в группах надо не только провести предлагаемый эксперимент, но и сделать определённые выводы из наблюдений и понять, какое действие тока вы наблюдали во время опытов работы. После выполнения экспериментального задания один человек от группы расскажет о своих наблюдениях, а второй человек, во время рассказа, аккуратно заполнит предоставленную таблицу на доске.

Действия электрического тока.

Названия действия электрического тока
Приборы
Схема
Применение

4. Перед началом работы, вспомним о технике безопасности:

Человеческое тело – проводник. Если случайно человек окажется под напряжением 24В, то в большинстве случаев он не избежит травмы или даже смерти. Поэтому любому человеку, имеющему дело с электричеством, надо помнить следующие правила:

  1. Очень опасно одновременное прикосновение двумя руками к двум оголённым проводам.
  2. Очень опасно прикосновение к оголённому проводу, стоя на земле, на сыром или цементном полу.
  3. Опасно пользоваться неисправными электроприборами.
  4. Нельзя собирать, разбирать, исправлять что-либо в электрическом приборе, не отключив его от источника питания.
  5. Нельзя проводить какие либо операции с электрической арматурой, не выключив её из сети.

Мы пользуемся на уроке напряжением безопасным для жизни 4В. Но правила, оговоренные выше, надо соблюдать.

5. Групповая работа по карточкам, отчёты групп, систематизация выводов в таблице на доске и в рабочих листах.

6. Закрепление изученного материала с помощью тестовых заданий

(где количество правильных ответов будет соответствовать вашей оценке). (

В некоторых веществах часть электронов очень слабо связана с положительными зарядами, находящимися в ядрах атома. Эти так называемые полусвободные электроны могут передвигаться из одного атома в другой и в межатомном пространстве.

Вещества, обладающие свободными и полусвободными электронами, называются проводниками электрического тока. К таким веществам, прежде всего, относятся металлы, уголь, растворы солей, кислот и щелочей. Другие вещества, в которых мало свободных и полусвободных электронов, называются непроводниками, изоляторами, или диэлектриками. Диэлектриками являются воздух и другие газы, стекло, фарфор, резина, сухое дерево и многие другие вещества. В обычном состоянии свободные электроны в проводниках беспорядочно (хаотически) передвигаются внутри вещества в различных направлениях и с различными скоростями. Они беспрерывно сталкиваются с атомами вещества, выбивают из них новые электроны, сами занимая их место, и т. д.

Возьмем две металлические пластины (рис. 4). Зарядим одну из них положительно (т. е. создадим в ней недостаток электронов), а другую отрицательно (т. е. создадим избыток электронов). Потенциал первой пластины будет положительным, а потенциал второй пластины отрицательным, т. е. между пластинами возникает разность потенциалов. Если соединить эти пластины между собой проводником (металлической проволокой), то свободные электроны, в избытке находящиеся на правой пластине, под действием сил электрического поля пластин устремятся по соединительному проводнику к левой пластине. Электроны всегда движутся от того места, где они находятся в избытке, т. е. от минуса, туда где имеется их недостаток, т. е. к плюсу. Таким образом, появится упорядоченное передвижение свободных электронов в проводнике, которое называется электрическим током.

Электрически разноименно заряженные пластины в данном случае являются источником тока и вместе с соединительным проводом составляют замкнутую электрическую цепь.

В приведенном выше примере движение электронов (т. е. электрический ток) в проводнике, соединяющем две заряженные металлические пластины, не может быть продолжительным. Число электронов на положительной пластине будет возрастать, а на отрицательной убывать. Через некоторое время избыток электронов на правой пластине компенсирует их недостаток на левой пластине и пластины приобретут одинаковый потенциал. В этот момент ток в проводнике прекратится;

Таким образом, необходимым условием для протекания электрического тока по проводнику является наличие разности потенциалов (напряжения) между его концами. Для создания разности потенциалов, поддерживающей в замкнутой цепи продолжительный по времени электрический ток, служат приборы, называемые источниками электрического тока.

Разность потенциалов разомкнутого источника тока (в данном случае пластин, не соединенных между собой проводником) носит название электродвижущей силы (сокращенно э.д.с.).

Электродвижущая сила, так же как и напряжение, в зависимости от ее величины измеряется в вольтах, киловольтах, милливольтах и микровольтах. Свободные электроны в проводнике движутся от низкого потенциала в направлении более высокого (т. е. от минуса к плюсу). Такое направление движения электронов называется истинным или действительным. Однако в электротехнике принято считать, что ток идет от плюса к минусу. Такое направление тока было установлено совершенно произвольно еще до открытия элементарных частиц - электронов. Это условное направление тока принято называть техническим. Следует запомнить, что направление тока принято считать противоположно направленным действительному движению электронов в проводнике (см. рис, 4). Электрический ток, который все время проходит в цепи в одном направлении и имеет неизменную (постоянную) величину, называется постоянным током.

Количество направленно движущихся электронов и их средняя скорость перемещения определяют количество электричества, которое проходит за единицу времени через сечение проводника, т. е. силу тока.

Следовательно, силой электрического тока в проводнике называется количество электричества, проходящего через поперечное сечение проводника в течение одной секунды.

Для измерения силы тока принята единица, называемая ампером (сокращенно а). Одному амперу соответствует прохождение через поперечное сечение проводника 6,3 10 18 электронов в секунду. Ток силой в один ампер, проходя через раствор азотнокислого серебра, выделяет из него каждую секунду 1,118 мг серебра. "Иногда ток выражают более мелкими величинами-тысячными долями ампера (миллиамперами) и миллионными долями ампера (микроамперами). Миллиампер обозначается буквами ма, а микроампер - буквами мка. 1 а=1000 ма-1000000 мка.

Следует отметить, что скорость перемещения электронов в проводнике весьма мала и измеряется долями сантиметра или миллиметра в секунду. Это объясняется тем, что электроны беспрерывно сталкиваются с частицами проводника. Однако скорость распространения тока в проводе очень велика и достигает скорости света, т. е. 300 000 км/сек. Если на одном конце провода возникает ток, то он почти мгновенно распространяется по всему проводнику, так как все электроны проводника одновременно приходят в движение.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!