Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Динисторы, их аналоги и тиристоры – сделай сам. Симисторы: от простого к сложному

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор - это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один - это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора - симистор - устройство и работа его в различных цепях.

Тиристор - это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить только в одном направлении. В этом случае они работают в схеме, как
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод - у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура



Тиристор - это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) - это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор


Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы правда, имеются в схеме некоторые особенности.

Способы отключения тиристоров

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы


А теперь ближе к теме статьи - нужно рассмотреть частный случай тиристора - симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора - выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора


Симистор - это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод - его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода - управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для "чайников" этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор


При питании от сети происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор - принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора - минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.


"Документация" - техническая информация по применению электронных компонентов , особенностях построения различных радиотехнических и электронных схем , а также документация по особенностям работы с инженерным программным обеспечением и нормативные документы (ГОСТ).

Тиристор

Тиристор - это переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент часто сравнивают с управляемым диодом и называют полупроводниковым управляемым вентилем (Silicon Controlled Rectifier, SCR).

Тиристор имеет три вывода, один из которых - управляющий электрод, можно сказать, "спусковой крючок" - используется для резкого перевода тиристора во включенное состояние.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают четыре основных свойства тиристора:

  • тиристор, как и диод, проводит в одном направлении, проявляя себя как выпрямитель;
  • тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния. Тем не менее для возврата тиристора в выключенное (разомкнутое) состояние необходимо выполнить специальные условия;
  • управляющий ток, необходимый для перевода тиристора из закрытого состояния в открытое, значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;
  • o средний ток через нагрузку, включенную последовательно с тиристором, можно точно регулировать в зависимости от длительности сигнала на управляющем электроде. Тиристор при этом является регулятором мощности.

Структура тиристора

Тиристором называется управляемый трехэлектродный полупроводниковый прибор, состоящий из чередующихся четырех кремниевых слоев типа р и n. Полупроводниковый прибор с четырехслойной структурой представлен на рис. 1.

Крайнюю область р-структуры, к которой подключается положительный полюс источника питания, принято называть анодом, а крайнюю область n, к которой подключается отрицательный полюс этого источника, - катодом.

Рис.1. Структура и обозначение тиристора

Свойства тиристора в закрытом состоянии

В соответствии со структурой тиристора можно выделить три электронно-дырочных перехода и заменить тиристор эквивалентной схемой, как показано на рис. 2.

Эта эквивалентная схема позволяет понять поведение тиристора с отключенным управляющим электродом.

Если анод положителен по отношению к катоду, то диод D2 закрыт, что приводит к закрытию тиристора, смещенного в этом случае в прямом направлении. При другой полярности диоды D1 и D2 смещены в обратном направлении, и тиристор также закрыт.

Рис.2. Представление тиристора тремя диодами

Принцип отпирания с помощью управляющего электрода

Эквивалентное представление структуры р-n-p-n в виде двух транзисторов показано на рис. 3.

Представление тиристора в виде двух транзисторов разного типа проводимости приводит к эквивалентной схеме, представленной на рис. 1.4. Она наглядно объясняет явление отпирания тиристора.

Зададим ток I GT через управляющий электрод тиристора, смещенного в прямом направлении (напряжение V AK положительное), как показано на рис. 4.

Так как ток I GT становится базовым током транзистора n-p-n, то ток коллектора этого транзистора равен B 1 xI GT , где B 1 - коэффициент усиления по току транзистора Т1.

Этот ток одновременно является базовым током транзистора р-n-р, что приводит к его отпиранию. Ток коллектора транзистора Т2 составляет величину B 1 xB 2 xI GT и суммируется с током I GT , что поддерживает транзистор Т1 в открытом состоянии. Поэтому, если управляющий ток I GT достаточно велик, оба транзистора переходят в режим насыщения.

Цепь внутренней обратной связи сохраняет проводимость тиристора даже в случае исчезновения первоначального тока управляющего электрода IGT, при этом ток анода (1А) остается достаточно высоким.

Типовая схема запуска тиристора приведена на рис. 5

.

Рис.3. Разбиение тиристора на два транзистора

Рис.4. Представление тиристора в виде двухтранзисторной схемы

Рис.5. Типичная схема запуска тиристора

Отключение тиристора

Тиристор перейдет в закрытое состояние, если к управляющему электроду открытого тиристора не приложен никакой сигнал, а его рабочий ток спадет до некоторого значения, называемого током удержания (гипостатическим током).

Отключение тиристора произойдет, в частности, если была разомкнута цепь нагрузки (рис. 6а) или напряжение, приложенное к внешней цепи, поменяло полярность (это случается в конце каждого полупериода переменного напряжения питания).

Рис.6. Способы отключения тиристора

Когда тиристор работает при постоянном токе, отключение может быть произведено с помощью механического выключателя.

Включенный последовательно с нагрузкой этот ключ используется для отключения рабочей цепи.

Поэтому предпочитают размещать ключ между управляющим электродом и катодом тиристора (рис. 1.6в), что гарантирует правильное отключение посредством отсечения удерживающего тока. Одновременно смещается в обратном направлении переход р-n, соответствующий диоду D2 из схемы замещения тиристора тремя диодами (рис. 2).

На рис. 6а-д представлены различные варианты схем отключения тиристора, среди них и ранее упоминавшиеся. Другие, как правило, применяются, когда требуется отключать тиристор с помощью дополнительной цепи. В этих случаях механический выключатель можно заменить вспомогательным тиристором или ключевым транзистором, как показано на рис. 7.



Рис.7. Классические схемы отключения тиристора с помощью дополнительной цепи

Симистор

Симиcmop - полупроводниковый прибор, который широко используется в системах, питающихся переменным напряжением. Упрощенно он может рассматриваться как управляемый выключатель. В закрытом состоянии он ведет себя как разомкнутый выключатель. Напротив, подача управляющего тока на управляющий электрод симис-тора ведет к переходу его в проводящее состояние. В это время симистор подобен замкнутому выключателю.

При отсутствии управляющего тока симистор во время любого полупериода переменного напряжения питания неизбежно переходит из состояния проводимости в закрытое состояние.

Кроме работы в релейном режиме в термостате или светочувствительном выключателе, разработаны и широко используются системы регулирования, функционирующие по принципу фазового управления напряжением нагрузки, или, другими словами, плавные регуляторы.

Симистор можно представить двумя тиристорами, включенными встречно-параллельно. Он пропускает ток в обоих направлениях. Структура этого полупроводникового прибора показана на рис. 8. Симистор имеет три электрода: один управляющий и два основных для пропускания рабочего тока.

Рис.8. Структура симистора

Функционирование симистора

Симистор открывается, если через управляющий электрод проходит отпирающий ток или если напряжение между его электродами А1 и А2 превышает некоторую максимальную величину (на самом деле это часто приводит к несанкционированным срабатываниям симистора, происходящим при максимуме амплитуды напряжения питания).

Симистор переходит в закрытое состояние после изменения полярности между его выводами А1 и А2 или если значение рабочего тока меньше тока удержания I у.

Отпирание симистора

В режиме переменного питания смена состояний симистора вызывается изменением полярности напряжения на рабочих электродах А1 и А2. Поэтому в зависимости от полярности управляющего тока можно определить четыре варианта управления симистором, как показано на рис. 9.

Каждый квадрант соответствует одному способу открывания симистора. Все способы кратко описаны в табл. 1.

Рис.9. Четыре возможных варианта управления симистором

Таблица 1. Упрощенное представление способов открывания симистора

Например, если между рабочими электродами симистора прикладывают напряжение V A1-A2 >0 и напряжение на управляющем электроде отрицательно по отношению к аноду А1, то смещение симистора соответствует квадранту II и упрощенному обозначению + -.

Для каждого квадранта определены отпирающий ток I от (I GT), удерживающий ток I уд (I н) и ток включения I выкл (I L).

Отпирающий ток должен сохраняться до тех пор, пока рабочий ток не превысит в два-три раза величину удерживающего тока I н. Этот минимальный отпирающий ток и является током включения симистора I L .

Затем, если убрать ток через управляющий электрод, симистор останется в проводящем состоянии до тех пор, пока анодный ток будет превышать ток удержания I н.

Ограничения при использовании

Симистор накладывает ряд ограничений при использовании, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dV/dt) между анодами симистора и скорости изменения рабочего тока di/dt.

Действительно, во время перехода симистора из закрытого состояния в проводящее внешней цепью может быть вызван значительный ток. В то же время мгновенного падения напряжения на выводах симистора не происходит. Следовательно, одновременно будут присутствовать напряжение и ток, развивающие мгновенную мощность, которая может достигнуть значительных величин. Энергия, рассеянная в малом пространстве, вызовет резкое повышение температуры р-п переходов. Если критическая температура будет превышена, то произойдет разрушение симистора, вызванное чрезмерной скоростью нарастания тока di/dt.

Ограничения также распространяются на изменение напряжения двух категорий: на dV/dt применительно к закрытому симистору и на dV/dt при открытом симисторе (последнее также называется скоростью переключения).

Чрезмерная скорость нарастания напряжения, приложенного между выводами А1 и А2 зарытого симистора, может вызвать его открытие при отсутствии сигнала на управляющем электроде. Это явление вызывается внутренней емкостью симистора. Ток заряда этой емкости может быть достаточным для отпирания симистора.

Однако не это является основной причиной несвоевременного открытия. Максимальная величина dV/dt при переключении симистора, как правило, очень мала, и слишком быстрое изменение напряжения на выводах симистора в момент его запирания может тотчас же повлечь за собой новое включение. Таким образом, симистор заново отпирается, в то время как должен закрыться.

Рис.10. Симистор с защитной RC-цепочкой

При индуктивной нагрузке симистора или при защите от внешних перенапряжений для ограничения влияния dV/dt и тока перегрузки желательно использовать защитную RC-цепочку (рис. 10).

Расчет значений R и С зависит от нескольких параметров, среди которых - величина тока в нагрузке, значения индуктивности и номинального сопротивления нагрузки, рабочего напряжения, характеристик симистора.

Совокупность этих параметров с трудом поддается точному описанию, поэтому часто принимают во внимание эмпирические значения. Включение сопротивления 100-150 Ом и конденсатора 100 нФ дает удовлетворительные результаты. Однако отметим, что значение сопротивления должно быть гораздо меньше (или одного порядка), чем величина полной нагрузки, являясь достаточно высоким для того, чтобы ограничить ток разряда конденсатора с целью соблюдения максимального значения di/dt в момент отпирания.

RC-цепочка дополнительно улучшает включение в проводящее состояние симистора, управляющего индуктивной нагрузкой. Действительно, ток разряда конденсатора устраняет влияние задержки индуктивного тока, поддерживая рабочий ток выше минимального значения удерживающего тока I уд (I н).

Рис.11. Защита симистора с помощью варистора

Дополнительная защита, заслуживающая внимания, может быть обеспечена с помощью варистора, подключенного к выводам индуктивной нагрузки. Другой варистор, включенный параллельно питающему напряжению, задержит помехи, распространяющиеся по сети питания. Защита симистора также обеспечивается при подключении варистора параллельно его выводам А1 и А2 (рис. 11).

Наряду с приборами, предназначенными для линейного усиления сигналов, в электронике, в вычислительной технике и особенно в автоматике широкое применение находят приборы с падающим участком вольт-амперной характеристики. Эти приборы чаще всего выполняют функции электронного ключа и имеют два состояния: закрытое, характеризующееся высоким сопротивлением; и открытое, характеризующееся минимальным сопротивлением.

Рассмотрим работу диода, состоящего из четырех чередующихся -слоев (Рис. 1.26).

Если в устройстве нет возможности установить требуемый динис- тор, можно пойти по другому пути и собрать схему, приведенную на Рис. 1.28.

Электронные устройства с динисторами (многие из этих устройств являются источниками питания и преобразователями напряжения) имеют такие преимущества; как малая рассеиваемая мощность и высокая стабильность выходного напряжения. Одним из недостатков является ограниченный выбор выходных напряжений, обусловленный напряжением включения (открывания) динисторов. Устранение этого недостатка - задача разработчиков и производителей современной элементной базы динисторов.

Снабдим одну из баз динистора, например щ, внешним выводом и используем этот третий электрод для задания дополнительного тока через переход р\-щ. Для реальных четырехслойных структур характерна различная толщина баз. В качестве управляющей используется база, у которой коэффициент передачи оц близок к единице. В этом случае прибор будет обладать свойствами тиратрона. Для такого прибора, или тиристора, используется та же терминология, что и для обычного транзистора: выходной ток называется коллекторным, а управляющий - базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой, в данном случае - п 2 .

При увеличении управляющего тока Iq напряжение прямого переключения уменьшается, отчасти возрастает ток прямого переключения и уменьшается ток обратного переключения. В результате отдельные кривые с ростом тока 1(, как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой).

Мощные используются в качестве контакторов, коммутаторов тока, а также в преобразователях постоянного напряжения, инверторах и выпрямительных схемах с регулируемым выходным напряжением.

Время переключения у тиристоров значительно меньше, чем у тиратронов. Даже у мощных приборов (с токами в десятки ампер и больше) время прямого переключения составляет около 1 мкс, а время обратного переключения не превышает 10…20 мкс. Наряду с конечной длительностью фронтов напряжения и тока имеют место задержки фронтов по отношению к моменту подачи управляющего импульса. Наряду с мощными тиристорами разрабатываются и маломощные варианты. В таких приборах время прямого переключения составляет десятки, а время обратного переключения - сотни наносекунд. Столь высокое быстродействие обеспечивается малой толщиной слоев и наличием электрического поля в толстой базе. Маломощные быстродействующие используются в различных спусковых и релаксационных схемах.

В 1963 году у многочисленного семейства тринисторов появился еще один "родственник" - симистор . Чем же он отличается от своих «собратьев» - тринисторов (тиристоров)? Вспомните о свойствах этих приборов. Их работу часто сравнивают с действием обычной двери: прибор заперт - ток в цепи отсутствует (дверь закрыта - прохода нет), прибор открыт - в цепи возникает электрический ток (дверь отворилась - входите). Но у них есть общий недостаток. Тиристоры пропускают ток только в прямом направлении — так обычная дверь легко открывается "от себя", но сколько ни тяни ее на себя — в противоположную сторону, все усилия окажутся бесполезными.

Увеличив число полупроводниковых слоев тиристора с четырех до пяти и снабдив его управляющим электродом, ученые обнаружили, что прибор с такой структурой (названный впоследствии симистором) способен пропускать электрический ток как в прямом, так и в обратном направлениях.

Посмотрите на рисунок 1, изображающий строение полупроводниковых слоев симистора. Внешне они напоминают транзисторную структуру р-n -р типа, но отличаются тем, что имеют три дополнительные области с n -проводимостью. И вот что интересно: оказывается, две из них, расположенные у катода и анода, выполняют функции только одного полупроводникового слоя — четвертого. Пятый образует область с n -проводимостью, лежащая около управляющего электрода.

Ясно, что работа такого прибора основана на более сложных физических процессах, чем у других типов тиристоров. Чтобы лучше разобраться в принципе действия симистора, воспользуемся его тиристорным аналогом. Почему именно тиристорным? Дело в том, что разделение четвертого полупроводникового слоя симистора не случайно. Благодаря такой структуре при прямом направлении тока, протекающего через прибор, анод и катод выполняют свои основные функции, а при обратном они как бы меняются местами — анод становится катодом, а катод, наоборот, анодом, то есть симистор можно рассматривать как два встречно-параллельно включенных тиристора (рис. 2).

Представим, что на управляющий электрод подан отпирающий сигнал. Когда на аноде прибора напряжение положительной полярности, а на катоде — отрицательной, электрический ток потечет через левый по схеме тринистор. Если полярность напряжения на силовых электродах поменять на противоположную, включится правый по схеме тринистор. Пятый полупроводниковый слой, подобно регулировщику, руководящему движением автомобилей на перекрестке, направляет отпирающий сигнал, зависимости от фазы тока на один из тринисторов. При отсутствии отпирающего сигнала симистор закрыт.

В целом его действие можно сравнить, например, с вращающейся дверью на станции метро — в какую сторону ни толкни ее, она обязательно откроется. Действительно, подадим отпирающее напряжение на управляющий электрод симистора — "подтолкнем" его, и электроны, словно спешащие на посадку или выход пассажиры, потекут через прибор в направлении, диктуемом полярностью включения анода и катода.

Этот вывод подтверждается и вольтамперной характеристикой прибора (рис. 3). Она состоит из двух одинаковых кривых, повернутых относительно друг друга на 180°. Их форма соответствует вольтамперной характеристике динистора, а области непроводящего состояния, как и у тринистора, легко преодолеваются, если на управляющий электрод подать отпирающее напряжение (изменяющиеся участки кривых показаны штриховыми линиями).

Благодаря симметричности вольтамперной характеристики новый полупроводниковый прибор был назван симметричным тиристором (сокращенно — симистор). Иногда его называют триаком (термин, пришедший из английского языка).

Симистор унаследовал от своего предшественника — тиристора все его лучшие свойства. Но самое главное достоинство новинки в том, что в ее корпусе расположили сразу два полупроводниковых прибора. Судите сами. Для управления цепью постоянного тока необходим один тиристор, для цепи переменного тока приборов должно быть два (включены встречно-параллельно). А если учесть, что для каждого из них нужен отдельный источник отпирающего напряжения, который к тому же должен включать прибор точно в момент изменения фазы тока, становится ясно, каким сложным будет такой управляющий узел. Для симистора же род тока не имеет значения. Достаточно лишь одного такого прибора с источником отпирающего напряжения, и универсальное управляющее устройство готово. Его можно использовать в силовой цепи постоянного или переменного тока.

Близкое родство тиристора и симистора привело к тому, что у этих приборов оказалось много общего. Так электрические свойства симистора характеризуются теми же параметрами, что и у тиристора. Маркируются они тоже одинаково — буквами КУ, трехзначным числом и буквенным индексом в конце обозначения. Иногда симисторы обозначают несколько иначе — буквами ТС, что означает "тиристор симметричный".

Условное графическое обозначение симисторов на принципиальных схемах показано на рисунке 4.

Для практического знакомства с симисторами выберем приборы серии КУ208 — триодные симметричные тиристоры п-р-п-р типа. На разновидности приборов указывают буквенные индексы в их обозначении — А, Б, В или Г. Постоянное напряжение, которое выдерживает в закрытом состоянии симистор с индексом А, составляет 100 В, Б — 200 В, В — 300 В и Г — 400 В. Остальные параметры у этих приборов идентичные: максимальный постоянный ток в открытом состоянии — 5 А, импульсный —10 А, ток утечки в закрытом состоянии — 5 мА, напряжение между катодом и анодом в проводящем состоянии — -2 В, величина отпирающего напряжения на управляющем электроде равна 5 В при токе 160 мА, рассеиваемая корпусом прибора мощность— 10 Вт, предельная рабочая частота — 400 Гц.

А теперь обратимся к электроосветительным приборам. Нет ничего проще управлять работой любого из них. Нажал, к примеру, клавишу выключателя — ив комнате загорелась люстра, нажал еще раз — погасла. Иногда, правда, это достоинство неожиданно превращается в недостаток, особенно если вы хотите сделать свою комнату уютной, создать ощущение комфорта, а для этого так важно удачно подобрать освещение. Вот если бы свечение ламп менялось плавно...

Оказывается, в этом нет ничего невозможного. Нужно только вместо обычного выключателя подсоединить электронное устройство, управляющее яркостью светильника. Функции регулятора, "командующего" лампами, в таком приборе выполняет полупроводниковый симистор.

Построить простое регулирующее устройство, которое поможет управлять яркостью свечения настольной лампы или люстры, изменять температуру электроплитки или жала паяльника, вы сможете, воспользовавшись схемой, представленной на рисунке 5.

Рис. 5. Принципиальная схема регулятора

Трансформатор Т1 преобразует сетевое напряжение 220 В в 12 — 25 В. Оно выпрямляется диодным блоком VD1—VD4 и подается на управляющий электрод симистора VS1. Резистор R1 ограничивает ток управляющего электрода, а переменным резистором R2 регулируют величину управляющего напряжения.

Рис. 6. Временные диаграммы напряжения: а - в сети; б - на управляющем электроде симистора, в - на нагрузке.

Чтобы легче было разобраться в работе прибора, построим три временные диаграммы напряжений: сетевого, на управляющем электроде симистора и на нагрузке (рис. 6). После включения устройства в сеть на его вход поступает переменное напряжение 220 В (рис. 6а). Одновременно на управляющий электрод симистора VS1 подается отрицательное напряжение синусоидальной формы (рис. 66). В момент, когда его величина превысит напряжение включения, прибор откроется и сетевой ток потечет через нагрузку. После того как величина управляющего напряжения станет ниже пороговой, симистор остается открытым за счет того, что ток нагрузки превышает ток удержания прибора. В тот момент, когда напряжение на входе регулятора меняет свою полярность, симистор закрывается. Далее процесс повторяется. Таким образом, напряжение на нагрузке будет иметь пилообразную форму (рис. 6в)

Чем больше амплитуда управляющего напряжения, тем раньше включится симистор, а следовательно, больше будет и длительность импульса тока в нагрузке. И наоборот, чем меньше амплитуда управляющего сигнала, тем меньше будет длительность этого импульса. При крайнем левом по схеме положении движка переменного резистора R2 нагрузка станет поглощать полные «порции» мощности. Если регулятор R2 повернуть в противоположную сторону, амплитуда управляющего сигнала окажется ниже порогового значения, симистор останется в закрытом состоянии и ток через нагрузку не потечет.

Нетрудно догадаться, что наш прибор регулирует мощность, потребляемую нагрузкой, изменяя тем самым или температуру нагревательного элемента.

В устройстве можно применить следующие элементы. Симистор КУ208 с буквой В или Г. Диодный блок КЦ405 или КЦ407 с любым буквенным индексом, подойдут также четыре серий Д226, Д237. Постоянный резистор — МЛТ-0,25, переменный — СПО-2 или любой другой мощностью не менее 1 Вт. ХР1 — стандартная сетевая вилка, XS1 — розетка. Трансформатор Т1 рассчитан на напряжение вторичной обмотки 12—25 В.

Если подходящего трансформатора нет, изготовьте его самостоятельно. Сердечник из пластин Ш16, толщина набора 20 мм, обмотка I содержит 3300 витков провода ПЭЛ-1 0,1, а обмотка II — 300 витков ПЭЛ-1 0,3.

Тумблер — любой сетевой, предохранитель должен быть рассчитан на максимальный ток нагрузки.

Регулятор собирается в пластмассовом корпусе. На верхней панели крепятся тумблер, переменный резистор, держатель предохранителя и розетка. Трансформатор, диодный блок и симистор устанавливаются на дне корпуса. Симистор необходимо снабдить теплорассеивающим радиатором толщиной 1 — 2 мм и площадью не менее 14 см2. В одной из боковых стенок корпуса просверлите отверстие для сетевого шнура.

Устройство не нуждается в налаживании и при правильном монтаже и исправных деталях начинает работать сразу после включения в сеть.

ПОЛЬЗУЯСЬ РЕГУЛЯТОРОМ, НЕ ЗАБЫВАЙТЕ О МЕРАХ БЕЗОПАСНОСТИ. ВСКРЫВАТЬ КОРПУС МОЖНО, ТОЛЬКО ОТКЛЮЧИВ ПРИБОР ОТ СЕТИ!

Управление тринисторами и симисторами

Самый простой способ управления тиристорами - это подача на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (рис. 1). Ключ SA1 на рис. 1 и на последующих рисунках - это любой элемент, обеспечивающий замыкание цепи: транзистор, выходной каскад микросхемы, оптрон и др. Этот способ прост и удобен, но обладает существенным недостатком - требуется довольно большая мощность управляющего сигнала. В табл. 1 приведены наиболее важные параметры для обеспечения надежного управления некоторыми самыми распространенными тиристорами (три первых позиции занимают тринисторы, остальные - симисторы). При комнатной температуре для гарантированного включения перечисленных тиристоров требуется ток управляющего электрода Iу вкл равный 70-160 мА. Следовательно, при напряжении питания, типовом для собранных на микросхемах узлов управления (10-15 В), требуется постоянная мощность 0,7-2,4 Вт.

Отметим, что полярность управляющего напряжения для тринисторов положительная относительно катода, а для симисторов - или отрицательная для обоих полупериодов, или совпадающая с полярностью напряжения на аноде. Также можно добавить, что часто в соответствии с указаниями по применению требуется шунтирование управляющего перехода тринисторов сопротивлением 51 Ом (R2 на рис. 1) и не требуется никакого шунтирования для симисторов.

Реальные величины тока управляющего электрода, достаточного для включения тиристора, обычно меньше цифр, приведенных в табл. 1, поэтому нередко идут на его снижение относительно гарантированных значений: для тринисторов - до 7-40 мА, для симисторов - до 50-60 мА. Такое снижение часто приводит к ненадежной работе устройств, и необходимости предварительной проверки или же подбора тиристоров. Уменьшение управляющего тока также может приводить к возникновению помех радиоприему, поскольку включение тиристоров при малых токах управляющего электрода происходит при относительно большом напряжении на аноде - несколько десятков вольт, что приводит к броскам тока через нагрузку и, следовательно, к мощным помехам.

Недостатком управления тиристорами постоянным током является гальваническая связь источника управляющего сигнала и сети. Если в схеме с симистором (рис. 1, б) при соответствующем включении сетевых проводов источник управляющего сигнала можно соединить с нулевым проводом, то при использовании тринистора (рис 1, а) такая возможность возникает лишь при исключении выпрямительного моста VD1-VD4. Последнее приводит к однополупериодной подаче напряжения на нагрузку и двукратному уменьшению поступаемой в нее мощности.

В настоящее время в связи с большой потребляемой мощностью запуск тиристоров постоянным током при бестрансформаторном питании пусковых узлов (с гасящим резистором или конденсатором) практически не используется.

П

рименение импульсного запуска облегчает гальваническую развязку между узлом управления и сетью, ибо ее может обеспечить даже небольшой трансформатор с коэффициентом трансформации, близким к 1:1. Его обычно наматывают на ферритовом кольце диаметром 16-20 мм с тщательно выполненной изоляцией между обмотками. Следует предостеречь от применения малогабаритных импульсных трансформаторов промышленного изготовления. Как правило, они имеют низкое напряжение изоляции (около 50-100 В) и могут служить причиной поражения электрическим током, если при использовании прибора будет считаться, что цепь управления изолирована от сети.

Широко распространен способ управления тиристорами - подача на управляющий электрод сигнала с его анода через ключ и ограничительный резистор (рис. 2). В таком узле ток через ключ протекает в течение нескольких микросекунд, пока включается тиристор, если напряжение на аноде достаточно велико. В качестве ключей используют маломощные электромагнитные реле, высоковольтные биполярные транзисторы, фотодинистры или фотосимисторы (схемы на рис. 2 соответственно). Способ прост и удобен, некритичен к наличию у нагрузки индуктивной составляющей, но имеет недостаток, на который нередко не обращают внимания.

Недостаток связан с противоречивостью требований к ограничительному резистору R1. С одной стороны, его сопротивление должно быть как можно меньше, чтобы включение тиристора происходило как можно ближе к началу полупериода сетевого напряжения. С другой стороны, при первом открывании ключа, если оно не синхронизировано с моментом прохождения сетевого напряжения через нуль, напряжение на резисторе R1 может достигать амплитудного напряжения сети, т. е. составлять 310-350 В. Импульс тока через этот резистор не должен превышать допустимых значений для ключа и управляющего перехода тиристора. Если ток управляющего электрода, при котором происходит включение симистора, соответствует его максимальному значению 160 мА, симистор будет включаться при напряжении на аноде равном 0,16ћ330 = 53 В.

Это приводит к возникновению помех и к некоторому уменьшению выходного напряжения. Поскольку реальная чувствительность тиристоров по управляющему электроду обычно лучше, задержка открывания тиристора относительно начала полупериода меньше рассчитанной выше предельной величины.

Сопротивление ограничивающего резистора R1 может быть уменьшено на величину сопротивления нагрузки, поскольку в момент включения они включены последовательно. Более того, если нагрузка имеет гарантированно индуктивно-резистивный характер, можно еще более уменьшить сопротивление указанного резистора. Однако если нагрузкой являются лампы накаливания, надо помнить, что их холодное сопротивление примерно в десять раз меньше рабочего.

Следует также иметь ввиду, что включающий ток симисторов имеет разную величину для положительной и отрицательной полуволн сетевого напряжения. Поэтому в выходном напряжении мо жет появиться небольшая постоянная составляющая.

Применение импульсного запуска облегчает гальваническую развязку между узлом управления и сетью, ибо ее может обеспечить даже небольшой трансформатор с коэффициентом трансформации, близким к 1:1. Его обычно наматывают на ферритовом кольце диаметром 16-20 мм с тщательно выполненной изоляцией между обмотками. Следует предостеречь от применения малогабаритных импульсных трансформаторов промышленного изготовления. Как правило, они имеют низкое напряжение изоляции (около 50-100 В) и могут служить причиной поражения электрическим током, если при использовании прибора будет считаться, что цепь управления изолирована от сети.

Снижение требуемой при импульсном управлении мощности и возможность введения гальванической развязки позволяют применить в узлах управления тиристорами бестрансформаторное питание.

Существенного сокращения потребляемой цепями управления мощности можно добиться, если включать ток управляющего электрода в момент включения тиристора. Два варианта схем узлов управления, обеспечивающих такой режим, приведены на рис. 3.

Включение тринистора в схеме на рис. 3, а происходит в момент замыкания контактов ключа SA1. После включения тринистора элемент DD1.1 выключается, и ток управляющего электрода прекращается, что существенно экономит потребление по цепи управления. Если напряжение на тринисторе в момент включения SA1 будет меньше порога переключения DD1.1, тринистор не включится, пока напряжение на нем не достигнет этого порога, т. е. не станет несколько более половины напряжения питания микросхемы. Регулировать пороговое напряжение можно подбором сопротивления нижнего плеча делителя резистора R6. Резистор R2 обеспечивает низкий логический уровень на входе 1 элемента DD1.1 при закрывании тринистора VS1 и диодного моста VD2.

Для аналогичного включения симистора необходим узел двуполярного управления элементом совпадения DD1.1 (рис. 3, б). Этот узел собран на транзисторах VT1, VT2 и резисторах R2-R4. Транзистор VT1 включен по схеме с общей базой, и напряжение на его коллекторе становится по модулю меньше порога переключения элемента DD1.1, когда напряжение на аноде симистора VS1 положительно относительно катода и превышает его примерно на 7 В. Аналогично транзистор VT2 входит в насыщение, когда отрица тельное напряжение на аноде становится по модулю больше -6 В.

Такой узел выделения момента прохождения напряжения через нуль широко применяется в различных разработках.

Наиболее экономичные схемы управления используют формирование одиночного включающего импульса вблизи перехода сетевого напряжения через нуль.

Минимальная длительность включающего импульса определяется тем, что он должен оканчиваться не ранее, чем ток через нагрузки достигнет тока удержания тиристора.

Для уменьшения потерь мощности можно сформированный в узлах по схемам на рис. 4 импульс, продифференцировать его, и продифференцированный задний фронт использовать как запускающий для тиристора (рис. 6). Параметры этого запускающего импульса Ти следует выбирать так. Он должен начинаться как можно раньше после прохождения сетевого напряжения через нуль, чтобы бросок тока через нагрузку в момент включения в начале каждого полупериода был бы минимальным и минимальными были бы помехи и потери мощности. Здесь ширина импульса, формируемого в момент прохождения напряжения сети через нуль, ограничена снизу только временем перезаряда дифференцирующей цепи C1R7 и может быть достаточно малой, но конечной. Оканчиваться импульс должен, как и для предыдущего варианта, не ранее, чем когда ток через нагрузку достигнет тока удержания тиристора.

При работе узлов по схемам на рис. 7 и 8 подача на управляющий электрод импульса включения спрямляет выходную характеристику тиристора в момент прохождения сетевого напряжения через нуль и при правильно выбранной длительности импульса удерживает тиристор во включенном состоянии до момента достижения тока удержания даже при наличии небольшой индуктивной составляющей нагрузки. Источник питания таких узлов может быть собран по бестрансформаторной схеме с гасящим резистором или, что еще лучше, конденсатором. Помех радиоприему такое включение тиристоров не создает и может быть рекомендовано для всех случаев управления нагрузками с малой индуктивной составляющей.

Выше были рассмотрены варианты управления тиристорами при их использовании в качестве ключей. При фазоимпульсном управлении мощностью нагрузок можно использовать описанные выше схемотехнические решения по формированию импульсов в моменты перехода сетевого напряжения через нуль для запуска времязадающего узла запуска тиристора. Отметим, что такой узел должен давать стабильную задержку включения тиристора, не зависящую от напряжения сети и температуры, а длительность формируемого импульса должна обеспечить достижение тока удержания независимо от момента включения нагрузки в пределах полупериода.

светорегуляторы. Разновидности тиристоров

В статье рассказано об использовании тиристоров, приведены простые и наглядные опыты для изучения принципов их работы. Также даны практические указания по проверке и подбору тиристоров.

Самодельные светорегуляторы

Несмотря на разнообразие и наличие в продаже таких устройств можно собрать светорегулятор по достаточно простой любительской схеме.

К тому же светорегулятор вовсе не обязательно должен регулировать свет, можно приспособить его, например, к паяльнику. В общем, применений предостаточно, готовое устройство может всегда пригодиться.

Практически все подобные устройства выполнены с применением тиристоров, о которых стоит рассказать отдельно, ну хотя бы вкратце, чтобы принцип действия тиристорных регуляторов был ясен и понятен.

Кое- что давайте повторим!

Разновидности тиристоров

Название тиристор подразумевает под собой несколько разновидностей, или как принято говорить, семейство полупроводниковых приборов. Такие приборы представляют собой структуру из четырех p и n слоев, образующих три последовательных p-n (p-n буквы латинские: от positive и negative) перехода.

Рис. 1. Тиристоры

Если от крайних областей p n сделать выводы, получившийся прибор называется диодным тиристором, по-другому динистор . Он и внешним видом похож на диод серии Д226 или Д7Ж, только диоды имеют всего лишь один p-n переход. Конструкция и схема динистора типа КН102 показана на рисунке 2.

Там же показана и схема его включения. Если сделать вывод еще от одного p-n перехода, то получится триодный тиристор, называемый тринистором. В одном корпусе может находиться сразу два тринистора, включенных встречно – параллельно. Такая конструкция называется симистором и предназначена для работы в цепях переменного тока, поскольку может пропускать как положительные, так и отрицательные полупериоды напряжения.

Рисунок 2. Внутреннее устройство и схема включения диодного тиристора КН102

Вывод катода, область n, соединен с корпусом, а вывод анода через стеклянный изолятор соединен в областью p, как показано на рисунке 1. Там же показано включение динистора в цепи питания. В цепь питания последовательно с динистором обязательно должна быть включена нагрузка , так же как если бы это был обычный диод. На рисунке 3 показана вольт - амперная характеристика динистора.

Рисунок 3. Вольт - амперная характеристика динистора

Из этой характеристики видно, что напряжение к динистору может быть приложено как в обратном направлении (на рисунке в нижней левой четверти), так и в прямом, как показано в правой верхней четверти рисунка. В обратном направлении характеристика похожа на характеристику обычного диода: через прибор протекает незначительный обратный ток, практически можно считать что и нет никакого тока.

Больший интерес представляет прямая ветвь характеристики. Если на динистор подать напряжение в прямом направлении и постепенно его увеличивать, то ток через динистор будет невелик, и изменяться будет незначительно. Но лишь до тех пор, пока не достигнет определенного значения, называемого напряжением включения динистора. На рисунке это обозначено как Uвкл.

При этом напряжении во внутренней четырехслойной структуре происходит лавинообразное увеличение тока, динистор открывается, переходит в проводящее состояние, о чем свидетельствует участок с отрицательным сопротивлением на характеристике. Напряжение участка катод – анод резко уменьшается, а ток через динистор ограничивается только лишь внешней нагрузкой, в данном случае сопротивлением резистора R1. Главное, чтобы ток был ограничен на уровне не выше предельно допустимого, который оговаривается в справочных данных.

Предельно допустимый ток или напряжение, это та величина, при которой гарантируется нормальная работа прибора в течение длительного времени. Причем следует обратить внимание на то, чтобы предельно допустимого значения достигал лишь один из параметров: если прибор работает в режиме предельно допустимого тока, то рабочее напряжение должно быть ниже, чем предельно допустимое. В противном случае нормальная работа полупроводникового прибора не гарантируется. К достижению предельно допустимых параметров специально, конечно, стремиться не надо, но уж если так получилось…

Этот прямой ток через динистор будет протекать до тех пор, пока каким - либо образом динистор будет выключен. Для этого необходимо прекратить прохождение прямого тока. Это можно сделать тремя способами: разомкнуть цепь питания, замкнуть накоротко динистор при помощи перемычки (весь ток пройдет через перемычку, а ток через динистор будет равен нулю), или изменить на противоположную полярность питающего напряжения. Такое получается если питать динистор и нагрузку переменным током. Такие же методы выключения и у триодного тиристора – тринистора.

Маркировка динисторов

Она состоит из нескольких букв и цифр, наиболее распространены и доступны отечественные приборы серии КН102 (А,Б…И). первая буква К, говорит о том, что это кремниевый полупроводниковый прибор, Н что это динистор, цифры 102 номер разработки, а вот последняя буква определяет напряжение включения.

Весь справочник тут не поместится, однако следует отметить, что КН102А имеет напряжение включения 20В, КН102Б 28В, а КН102И уже целых 150В. При последовательном включении приборов напряжение включения складывается, например два КН102А дадут в сумме напряжение включения 40В. Динисторы выпускавшиеся для оборонной промышленности вместо первой буквы К имеют цифру 2. Это же правило используется и в маркировке транзисторов.

Такая логика работы динистора позволяет на его базе собирать достаточно простые генераторы импульсов . Схема одного из вариантов показана на рисунке 4.

Рисунок 4. Генератор на динисторе

Принцип работы такого генератора достаточно прост: выпрямленное диодом VD1 сетевое напряжение через резистор R1 заряжает конденсатор C1, и как только напряжение на нем достигнет напряжения включения динистора VS1, последний открывается, и конденсатор разряжается через лампочку EL1, которая дает кратковременную вспышку, после которой процесс повторяется сначала. В реальных схемах вместо лампочки может устанавливаться трансформатор, с выходной обмотки которого могут сниматься импульсы, используемые для каких-либо целей, например, в качестве открывающих импульсов.

Устройство тиристора

После того, как было рассмотрено устройство и использование динистора, будет проще понять устройство и работу тринистора. Впрочем, чаще всего тринистор именуют просто тиристором, как-то привычнее.

Устройство триодного тиристора (тринистора) показано на рисунке 1.

На рисунке все показано достаточно подробно и в целом, кроме разве что другого корпуса, напоминает устройство динистора. Схема подключения нагрузки и элемента питания та же, что и у динистора.

В обоих случаях источник питания условно показан в виде батарейки, для того, чтобы видеть полярность подключения. Единственным новым элементом на этом рисунке является управляющий электрод УЭ, присоединенный, как уже говорилось ранее, к одной из областей «слоеного» полупроводникового кристалла.

Вольт–амперная характеристика тринистора показана на рисунке 2, и очень похожа на соответствующую характеристику динистора.

Рисунок 1. Устройство триодного тиристора

Рисунок 2. Вольт – амперная характеристика тринистора

Если предположить, что УЭ не используется, как, будто его вовсе и нет, то тринистор подобно динистору будет открываться при постепенном увеличении прямого напряжения между анодом и катодом. В справочниках это напряжение называется Uпр – прямое напряжение.

Если по справочнику прямое напряжение для конкретного тринистора 200В, а мы подаем на него все 300 или более, то тиристор откроется безо всякого напряжения на управляющем электроде. Об этом надо знать и всегда помнить, иначе возможны конфузные ситуации: «Поставили новый тиристор, а он оказался негодным».

Если на управляющий электрод подать положительное напряжение, естественно относительно катода, то открытие тиристора произойдет намного раньше, чем прямое напряжение достигнет предельной величины. Происходит как бы спрямление выброса вольтамперной характеристики, что и показано пунктирными линиями. В определенный момент характеристика становится похожа на аналогичную характеристику обычного диода, ток через УЭ достигает максимальной величины и называется током спрямления Iуэ.

Управляющий электрод по сути дела является поджигающим: для открытия тиристора достаточно короткого импульса в несколько микросекунд , далее УЭ свои управляющие свойства утрачивает вплоть до того, как тринистор будет выключен одним из доступных способов. Эти способы те же, что и для динистора, о них уже было сказано выше.

С помощью воздействия на управляющий электрод тринистор выключить невозможно , хотя, справедливости ради надо сказать, что существуют и запираемые тиристоры . Правда, распространены они весьма мало, и широкого применения, особенно в любительских конструкциях, не находят.

Еще один важный момент: сопротивление нагрузки должно быть таким, чтобы ток через нее был не менее тока удержания для данного типа тиристора . Если, например, регулятор нормально работает с лампочкой, например, 60Вт, то вряд ли будет работать, если вместо такой нагрузки подключить всего лишь неоновую лампочку.

После такого чисто теоретического знакомства можно перейти к практическим опытам, позволяющим с помощью простейших схем и приемов понять и запомнить, как работает тиристор . Тут уже приходит в действие известная народная мудрость: не доходит через голову, так дойдет через руки, или по-другому: «А руки-то помнят!!!» Очень хороший принцип, помогает практически всегда!

Простые занимательные эксперименты с тринистором

Проверка тиристора

Для проведения этих опытов понадобится тринистор типа КУ201 или КУ202 с любым буквенным индексом, источник питания, лучше, если регулируемый, несколько резисторов, лампочек, кнопки и соединительные провода. Сборку схем лучше всего проводить навесным монтажом, как будет показано на рисунках, естественно, с использованием паяльника. Схема, показанная на рисунке 3, позволит проверить тиристор на работоспособность

Рисунок 3. Схема для проверки тиристора

Проще всего такую схему собрать с использованием трансформатора ТВК-110Л1 , применялся в черно-белых телевизорах в качестве выходного кадровой развертки. При включении в сеть 220В безо всяких переделок на вторичной обмотке получается напряжение около 25В, что достаточно не только для описываемого эксперимента, но и для создания маломощных блоков питания, наподобие тех сетевых адаптеров китайского производства, что продаются в магазинах. Если нет в наличии трансформатора ТВК-110Л1, можно использовать любой с напряжением вторичной обмотки 12 - 20В мощностью не менее 5Вт .

Еще понадобится собственно сам тиристор, три диода (можно заменить на 1N4007, как более распространенные в настоящее время), парочка лампочек на напряжение 12В (применяются в автомобилях для подсветки приборных щитков), кнопка и несколько резисторов. Если удастся найти лампы на напряжение 24В, то установка резисторов R3 и R4 не потребуется.

Резистор R2 предназначен для обеспечения необходимого тока удержания тиристора. Если применить более мощные лампы, то установка этого резистора не понадобится. Резистор R1 ограничивает ток в цепи управляющего электрода.

Методика пользования «прибором» достаточно проста. При включении прибора в сеть не должна зажечься ни одна из ламп. При нажатии на кнопку SB1 на время ее удержания должна засветиться лампа HL1. Если этого не произошло, то неисправность тиристора скрывается в управляющем электроде. Если при включении схемы сразу зажглись обе лампы, значит, тиристор просто пробит.

К слову сказать, этим прибором также можно проверять диоды: если вместо тиристора подключить диод в полярности указанной на схеме, то зажжется лампа HL1, а при изменении направления включения диода - HL2.

Тут может возникнуть вопрос: «А зачем проверять диоды таким способом, когда для этого существует обычный цифровой тестер?» Ответ на этот вопрос будет таков. Бывают случаи, хоть и редко, но метко, когда тестер, даже стрелочный, показывает, что диод исправен. И только «прозвонка» через лампочку показывает, что под нагрузкой диод «обрывается», лампочка не зажигается в каком бы направлении ни был подключен диод. Просто для обнаружения такого дефекта измерительного тока тестера не хватает. Кстати, такую «прозвонку» диода через лампочку, можно производить и от источника постоянного напряжения.

Небольшое лирическое отступление от темы

Те, кто занимается ремонтом, знают, что проверять детали приходится чаще всего, когда они запаяны в схему, и делать это приходится просто тестером. И в этой ситуации лучше всего пользоваться старым добрым стрелочным прибором, например, типа ТЛ4-М .

В режиме измерения сопротивлений эти приборы имеют больший измерительный ток, нежели современные цифровые тестеры, что позволяет удерживать в открытом состоянии тиристор типа КУ201, КУ202 или подобные. Методика проверки состоит в следующем. Измерение производится на пределе *Ω.

Сначала надо прикоснуться щупами тестера к аноду и катоду тиристора, естественно с соблюдением полярности. Стрелка прибора не должна отклониться. После этого замкнуть, например, пинцетом выводы УЭ и анода (корпуса). Стрелка должна отклониться примерно до половины шкалы, а после того, как пинцет будет убран, остаться на том же месте. Такой тиристор можно без опасения ставить в любую конструкцию.

Если же стрелка после размыкания цепи УЭ возвращается в исходную точку шкалы, это говорит о том, что ток удержания тиристора, даже нового, не паянного, очень большой, либо большой открывающий ток УЭ, и в некоторых случаях этот тринистор работать не будет.

Такой метод пригоден для отбраковки тиристров , в основном, отечественных. Импортные тиристоры, как правило, открываются более легко и надежно. Эта же методика подходит и для проверки симметричного тиристора (симистора).

Маленькое, но важное, замечание: у стрелочных тестеров в режиме измерения сопротивления плюсовой щуп омметра тот, который в режиме измерения постоянного напряжения является минусовым . Это надо знать, и помнить всегда. У цифровых тестеров плюс омметра там же, где и при измерении постоянного напряжения. Естественно, цифровым тестером вышеописанную проверку провести не удастся.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!