Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Сравнительная характеристика различных способов соединения источников тока. Параллельное соединение источников питания

Основы > Задачи и ответы > Постоянный электрический ток

Последовательное и параллельное соединения источников тока
Правило Кирхгофа


1 Найти разность потенциалов между точками а и b в схеме, изображенной на рис. 118. Э. д. с. источников тока e 1 = 1 В и e 2 =1,3 В, сопротивления резисторов R 1 = 10 Ом и R 2 = 5 Ом.
Решение:
Поскольку e 2 > e 1 то ток I будет идти в направлении, указанном на рис. 118, при этом разность потенциалов между точками а и b

2 Два элемента с э. д. с. e 1 = 1 ,5 B и e 2 r1 =0,6 Ом и r 2 = 0,4 Ом соединены по схеме, изображенной на рис. 119. Какую разность потенциалов между точками а и b покажет вольтметр, если сопротивление вольтметра велико по сравнению с внутренними сопротивлениями элементов?

Решение:
Поскольку e 2 > e 1 , то ток I будет идти в направлении, указанном на рис. 119. Током через вольтметр пренебрегаем ввиду
того, что его сопротивление велико по сравнению с внутренними сопротивлениями элементов. Падение напряжения на внутренних сопротивлениях элементов должно равняться разности э. д. с. элементов, так как они включены навстречу друг другу:
отсюда

Разность потенциалов между точками а и b (показание вольтметра)


3 Два элемента с э. д. с. e 1 =1.4B и e 2 = 1,1 В и внутренними сопротивлениями r =0,3 Ом и r 2 = 0,2 Ом замкнуты разноименными полюсами (рис. 120). Найти напряжение на зажимах элементов. При каких условиях разность потенциалов между точками а и b равна нулю?

Решение:

4 Два источника тока с одинаковыми э. д. с. e = 2 В и внутренними сопротивлениями r1 =0,4 Ом и r 2 = 0,2 Ом соединены последовательно. При каком внешнем сопротивлении цепи R напряжение на зажимах одного из источников будет равным нулю?

Решение:
Ток в цепи

(рис.361). Напряжения на зажимах источников тока

Решая первые два уравнения при условии V1=0, получим

Условие V2=0 неосуществимо, так как совместное решение первого и третьего уравнений приводит к значению R<0.


5 Найти внутреннее сопротивление r1 первого элемента в схеме, изображенной на рис. 121, если напряжение на его зажимах равно нулю. Сопротивления резисторов R 1 = ЗОм, R 2 = 6 0м, внутреннее сопротивление второго элемента r 2 = 0,4 Ом, э. д. с. элементов одинаковы.

Решение:
Ток в общей цепи



По условию задачи напряжение на зажимах первого элемента

отсюда

6 При каком соотношении между сопротивлениями резисторов R 1 , R2, R3 и внутренними сопротивлениями элементов r1, r2 (рис. 122) напряжение на зажимах одного из элементов будет равно нулю? Э. д. с. элементов одинаковы.

Решение:

7 Два генератора с одинаковыми э. д. с. e = 6 В и внутренними сопротивлениями r1 =0,5 Ом и r2 = 0,38 Ом включены по схеме, изображенной на рис. 123. Сопротивления резисторов R 1 = 2 Ом, R2 = 4 Ом, R3 = 7 Ом. Найти напряжения V 1 и V2 на зажимах генераторов.

Решение:
Ток в общей цепи

где внешнее сопротивление цепи

Напряжения на зажимах первого и второго генератора

напряжение на зажимах второго генератора

8 Три элемента с э. д. с. e 1 = 2,2 В, e 2 = 1 ,1 В и e 3 = 0,9 В и внутренними сопротивлениями r 1 = 0,2 Ом, r 2 = 0,4 Ом и r з = 0,5 Ом включены в цепь последовательно. Внешнее сопротивление цепи R= 1 Ом. Найти напряжение на зажимах каждого элемента.

Решение:
По закону Ома для полной цепи ток

Напряжение на зажимах каждого элемента равно разности э. д. с. и падения напряжения на внутреннем сопротивлении элемента:



Напряжение на зажимах батареи элементов равно падению напряжения на внешнем сопротивлении цепи:

Напряжение на зажимах третьего элемента оказалось отрицательным, так как ток определяется всеми сопротивлениями цепи и суммарной э.д.с, а падение напряжения на внутреннем сопротивлении r3 больше, чем э.д.с.
e 3 .

9 Батарея из четырех последовательно включенных в цепь элементов с э. д. с. e = 1,25 В и внутренним сопротивлением r = 0,1 Ом питает два параллельно соединенных проводника с сопротивлениями R1 = 50 Ом и R 2 = 200 Ом. Найти напряжение на зажимах батареи.

Решение:

10 Сколько одинаковых аккумуляторов с э. д. с. e = 1 ,25B и внутренним сопротивлением r = 0,004 Ом нужно взять, чтобы составить батарею, которая давала бы на зажимах напряжение V= 11 5 В при токе I =25 А?

Решение:
Напряжение на зажимах батареи

Следовательно,

11 Батарея из n = 40 последовательно включенных в цепь аккумуляторов с э. д. с. e = 2,5 В и внутренним сопротивлением r = 0,2 Ом заряжается от сети с напряжением V=121 В. Найти зарядный ток, если последовательно в цепь введен проводник с сопротивлением R = 2 Ом.

Решение:

12 Два элемента с э. д. с. e 1 = 1,25 В и e 2 = 1,5 В и одинаковыми внутренними сопротивлениями r = 0,4 Ом соединены параллельно (рис. 124). Сопротивление резистора R = 10 Ом. Найти токи, текущие через резистор и каждый элемент.

Решение:
Падение напряжения на резисторе, если токи текут в направлениях, указанных на рис. 124,

Учитывая, что I=I1+I2, находим


Заметим, что I1<0. Это значит, что направление тока противоположно указанному на рис. 124.
13 Два элемента с э. д. с. e 1 =6 В и e 2 = 5 В и внутренними сопротивлениями r1 = 1 Ом и r2 = 20м соединены по схеме, изображенной на рис. 125. Найти ток, текущий через резистор с сопротивлением R = 10 Ом.

Решение:
Выбрав направления токов, указанные на рис. 362, составим уравнения Кирхгофа. Для узла b имеем I1+I2-I=0; для контура abef (обход по часовой стрелке)

и для контура bcde (обход против часовой стрелки)

Из этих уравнений найдем


14 Три одинаковых элемента с э. д. с. e = 1,6 В и внутренним сопротивлением r =0,8 Ом включены в цепь по схеме, изображенной на рис. 126. Миллиамперметр показывает ток I =100 мА. Сопротивления резисторов R 1 = 10Ом и R2 = 15 0м, сопротивление резистора R неизвестно. Какое напряжение V показывает вольтметр? Сопротивление вольтметра очень велико, сопротивление миллиамперметра пренебрежимо мало.

Решение:
Внутреннее сопротивление элементов

Сопротивление параллельно включенных резисторов

Общая э. д. с. элементов e 0 =2 e Согласно закону Ома для полной цепи

15 Сопротивления резисторов R 1 и R 2 и э. д. с. e 1 и e 2 источников тока в схеме, изображенной на рис. 127, известны. При какой э.д.с. e 3 третьего источника ток через резистор R3 не течет?

Решение:
Выберем направления токов I1, I2 и I3 через резисторы R1, R2 и R3, указанные на рис. 363. Тогда I3=I1+I2. Разность потенциалов между точками а и b будет равна

Если

Исключая I1 находим

16 Цепь из трех одинаковых последовательно соединенных элементов с э.д.с. e и внутренним сопротивлением r замкнута накоротко (рис. 128). Какое напряжение покажет вольтметр, подключенный к зажимам одного из элементов?

Решение:
Рассмотрим ту же схему без вольтметра (рис. 364). Из закона Ома для полной цепи находим

Из закона Ома для участка цепи между точками а и b получим

Подключение вольтметра к точкам, разность потенциалов между которыми равна нулю, ничего не может изменить в цепи. Поэтому вольтметр будет показывать напряжение, равное нулю.
17 Источник тока с э.д.с. e 0 включен в схему, параметры которой даны на рис. 129. Найти э.д.с. e источника тока и направление его подключения к выводам а и b , при которых ток через резистор с сопротивлением R2 не идет.

Решение:
Подключим источник тока к выводам а и b и выберем направления токов, указанные на рис. 365. Для узла е имеем I=I0+I2. При обходе контуров aefb и ecdf по часовой стрелке получим
Используя условие I2 = 0, находим

Знак минус показывает, что полюсы источника тока на рис. 365 нужно поменять местами.

18 Два элемента с одинаковыми э.д.с. e включены в цепь последовательно. Внешнее сопротивление цепи R = 5 Ом. Отношение напряжения на зажимах первого элемента к напряжению на зажимах второго элемента равно 2/3. Найти внутренние сопротивления элементов r1 и r 2, если r 1=2 r 2.

Решение:

19 Два одинаковых элемента с э.д.с. e = 1 ,5 В и внутренним сопротивлением r = 0,2 Ом замкнуты на резистор, сопротивление которого составляет в одном случае R1=0,2 Oм, В другом - R 2 = 20 Ом. Как нужно соединить элементы (последовательно или параллельно) в первом и во втором случаях, чтобы получить наибольший ток в цепи?

Решение:
При параллельном соединении двух элементов внутреннее сопротивление и э.д.с. равны r/2 и e при последовательном соединении они равны 2r и 2 e . Через резистор R при этом текут токи
Отсюда видно, что I2>I1, если R/2+rr. Поэтому ток больше при последовательном соединении.
20 Два элемента с э.д.с. e 1 =4В и e 2 = 2В и внутренними сопротивлениями r1 = 0,25 Ом и r 2 = 0,75 Ом включены в схему, изображенную на рис. 130. Сопротивления резисторов R1 = 1 Ом и R2 = 3 Ом, емкость конденсатора С=2 мкФ. Найти заряд на конденсаторе.

Решение:

21 К батарее из двух параллельно включенных элементов с э.д.с. e 1 и e 2 и внутренними сопротивлениями r1 и r 2 подключен резистор с сопротивлением R. Найти ток I , текущий через резистор R, и токи I1 и I 2 в первом и втором элементах. При каких условиях токи в отдельных цепях могут быть равными нулю или изменять свое направление на обратное?

Решение:
Выберем направления токов, указанные на рис. 366. Для узла b имеем I-I1-I2=0. При обходе контуров abef и bcde по часовой стрелке получим

Из этих уравнений находим


Ток I=0 тогда, когда изменена полярность включения одного из элементов и, кроме того, выполнено условие

Ток I1=0 при

а ток I2 = 0 при

Токи I1 и I2 имеют направления, указанные на рис.366, если

Они меняют свое направление при

22 Батарея из n одинаковых аккумуляторов, соединенных в одном случае последовательно, в другом- параллельно, замыкается на резистор с сопротивлением R. При каких условиях ток, текущий через резистор, в обоих случаях будет один и тот же?

Решение:
При n(R-r) = R-r. Если R=r, то число элементов произвольно; если R r, задача не имеет решения ( n =1).
23 Батарея из n = 4 одинаковых элементов с внутренним сопротивлением r =2 Ом, соединенных в одном случае последовательно, в другом - параллельно, замыкается на резистор с сопротивлением R =10Ом. Во сколько раз показание вольтметра н одном случае отличается от показания вольтметра в другом случае? Сопротивление вольтметра велико по сравнению с R и r.

Решение:

где V1 - показание вольтметра при последовательном соединении элементов, V2-при параллельном.

24 Как изменится ток, текущий через резистор с сопротивлением R = 2 Ом, если n =10 одинаковых элементов, соединенных последовательно с этим резистором, включить параллельно ему? Э.д.с. элемента e = 2 В, его внутреннее сопротивление r = 0,2 Ом.

Решение:

25 Батарея составлена из N=600 одинаковых элементов так, что п групп соединены последовательно и в каждой из них содержится т элементов, соединенных параллельно. Э.д.с. каждого элемента e = 2 В, его внутреннее сопротивление r = 0,4 Ом. При каких значениях n и m батарея, будучи замкнута на внешнее сопротивление R = 0,6 Ом, отдаст во внешнюю цепь максимальную мощность? Найти при этом ток, текущий через сопротивление R.

Решение:
Общее число элементов N=nm (рис. 367). Ток во внешней цепи

где r/ m - внутреннее сопротивление группы из т параллельно соединенных элементов, а n r/ m - внутреннее сопротивление n групп, соединенных последовательно. Максимальная мощность (см. задачу 848) отдается во внешнюю цепь при равенстве сопротивления R внутреннему сопротивлению батареи элементов n r/ m , т. е.
При этом через сопротивление R течет точек I=46 А.

26 Емкость аккумулятора =80 А Ч ч. Найти емкость батареи из n = 3 таких аккумуляторов, включенных последовательно и параллельно.

Решение:
При последовательном соединении через все аккумуляторы батареи течет один и тот же ток, поэтому все они разрядятся в течение одного и того же времени. Следовательно, емкость батареи будет равна емкости каждого аккумулятора:
При параллельном соединении n аккумуляторов через каждый из них течет 1/n часть общего тока; поэтому при том же разрядном токе в общей цепи батареи будет разряжаться в n раз дольше, чем один аккумулятор, т. е. емкость батареи в п раз больше емкости отдельного аккумулятора:

Заметим, однако, что энергия

отдаваемая батареей в цепь, и при последовательном и при параллельном соединении
n аккумуляторов в n раз больше энергии, отдаваемой одним аккумулятором. Это происходит потому, что при последовательном соединении э. д. с. батареи в n раз больше э. д. с. одного аккумулятора, а при параллельном соединении э.д.с. батареи остается той же, что и для каждого аккумулятора, но Q увеличивается в n раз.
27 Найти емкость батареи аккумуляторов, включенных по схеме, изображенной на рис.131. Емкость каждого аккумулятора Qo =64 А Ч ч .

Решение:
Каждая группа из пяти аккумуляторов, включенных последовательно, имеет емкость

Три параллельно включенные группы дают общую емкость батареи

28 Мост для измерения сопротивлений сбалансирован так, что ток через гальванометр не идет (рис. 132). Ток в правой ветви I =0,2 А. Найти напряжение V на зажимах источника тока. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом, R3 = 1 Ом.

Решение:

29 Найти токи, протекающие в каждой ветви цепи, изображенной на рис. 133. Э.д.с. источников тока e 1 = 6,5 В и e 2 = 3,9 В. Сопротивления резисторов R1=R2=R3=R4=R5=R6=R=10 Ом.

Решение:
Составляем уравнения Кирхгофа в соответствии с направлениями токов, указанными на рис. 133: I1 + I2 - I3 = 0 для узла b;
I3 - I4 - I5 =0 для узла h; I5 - I1 - I6 = 0 для узла f: при этом | Электромашины | Оборудование | Нормы |

На практике несколько источников электрической энергии соединяются в группу - батарею источников электрической энергии. Соединение в батарею может быть последовательное, параллельное и смешанное.

При последовательном соедине­нии положительный полюс предыду­щего источника соединяется с отрица­тельным полюсом последующего. Дневники скромные апортаменты mrloft.ru/apartamenty .

Полная ЭДС цепи равна алгебраи­ческой сумме ЭДС отдельных элемен­тов, а внутреннее сопротивление бата­реи равно сумме сопротивлений источников:

Объяснить это можно тем, что при последовательном соедине­нии электрический заряд поочередно проходит через источник электрической энергии и в каждом из них приобретает энергию. Внутреннее сопротивление батареи также увеличивается.

При последовательном соединении одинаковых источников с ЭДС е и внутренним сопротивлением г ЭДС батареи и ее внут­реннее сопротивление равны.

где п - число источников.

Закон Ома для полной цепи при последовательном соедине­нии одинаковых источников тока записывается в виде;

где e и r - ЭДС и внутреннее сопротивление одного источника, R - сопротивление внешнего участка цепи, I - сила тока в цепи.

Например, полная цепь со­держит несколько источников тока, ЭДС которых равны E1,E2,E3 а внутренние сопротивле­ния-r1,r2,r3, соответственно. ЭДС, действующая в цепи, равна:

eб=e1 -e2+e3-e4

Сопротивление батареи равно:

r, = r, + r, + r, + г.

При этом учитываем, что положительными являются те ЭДС, которые повышают потенциал в направлении обхода цепи, т.е. направление обхода цепи совпадает с переходом внутри источни­ка от отрицательного полюса источника к положительному.

Последовательное соединение источников тока применяется в тех случаях, когда нужно повысить напряжение на внешней цепи, причем сопротивление внешней цепи велико по сравнению с внутренним сопротивлением одного источника.

Рис. 9

При параллельном соединении источников все их положительные

полюсы присоединены к одному проводнику, а отрицательные-к другому.

Полная ЭДС цепи (всей батареи равна ЭДС одного источника: eб= e,а внутреннее сопротивление батареи равно:

где п - число параллельно соединенных источников.

При параллельном соединении ток одного источника элект­рической энергии уже не проходит через другие, и поэтому каж­дый заряд получает энергию только в одном источнике. Сопротив­ление батареи меньше сопротивления одного источника, так как через каждый источник электрической энергии проходит только часть зарядов, перемещающихся во внешней цепи.

Закон Ома для полной цепи при параллельном соединении одинаковых источников тока записывается в виде:

Если заменить один источник тока батареей параллельно со­единенных источников, то ток в цепи возрастает.

Параллельное соединение источников тока применяется в тех случаях, когда нужно усилить ток во внешней цепи, не изменяя напряжения, причем сопротивление внешней цепи мало по срав­нению с сопротивлением одного источника.

Если ЭДС источников различны, то для источников тока на­пряжений и ЭДС в различных участках цепи удобно пользоваться правилами Кирхгофа, сформулированными в 1847 г. немецким Физиком Густавом Робертом Кирхгофом (1824-1887).

1. Первое правило (правило узлов).

Алгебраическая сумма сил токов, сходящихся в любом узле, равна нулю:

где п - число проводников, сходя­щихся в узле. Узлом в разветвлен­ной цепи называется точка, в кото­рой сходится не менее трех проводников. Токи, теку­щие к узлу, считаются положи­тельными, а токи, текущие от узла, отрицательными.

Рис. 10

Узел токов. I1+I2+I4=I3+I5 или I1+I2-I3+I4-I5=0.

2 Второе правило (правило контуров).

3.5. Эквивалентные преобразования схем

Эквивалентными называются такие преобразования схем, при которых остаются неизменными токи и напряжения в части схемы, не затронутой преобразованием.

3.5.1. Последовательное соединение двухполюсников

Последовательным называется такое соединение двухполюсников, при котором по всем двухполюсникам протекает один и тот же ток (рис. 3.13).

По второму закону Кирхгофа .

Здесь , то есть эквивалентное сопротивление ветви равно сумме сопротивлений, включенных последовательно.

Частный случай :при окажется .

Для схемы рис. 3.14 по второму закону Кирхгофа имеем: . Значит, эквивалентная ЭДС равна алгебраической сумме ЭДС источников, включенных последовательно. C о знаком «плюс» в этой сумме учитываются те из них, чьи стрелки направлены по отношению к узлам так же, как стрелка

Последовательное соединение идеальных источников тока с разными задающими токами не имеет физического смысла.

3.5.2. Параллельное соединение двухполюсников

Параллельным называется такое соединение двухполюсников, при котором все они находятся под одним и тем же напряжением (иными словами, каждый из них подключен к одной и той же паре узлов, как на рис. 3.15).

По первому закону Кирхгофа

Отсюда . Значит, эквивалентная проводимость равна сумме проводимостей параллельных ветвей.

Частный случай : при окажется

Еще один частный случай (схема рис. 3.16):

Здесь же

По аналогии .

Ток в одной из двух параллельных пассивных ветвей равен произведению тока в неразветвленной части на сопротивление другой ветви, отнесенному к сумме сопротивлений обеих ветвей правило параллельных ветвей »).

Для схемы рис. 3.17 имеем но поэтому .

Задающий ток эквивалентного источника равен алгебраической сумме задающих токов источников, включенных параллельно . Со знаком «плюс» учитываются те из них, чьи стрелки направлены по отношению к узлам так же, как стрелка эквивалентного источника .

Параллельное соединение источников напряжения с различными ЭДС не имеет физического смысла.

3.5.3. Эквивалентное преобразование последовательного

соединения ЕиRв параллельное соединение JиG

По второму закону Кирхгофа для схемы с последовательным соединением и по первому закону для схемы с параллельным соединением(рис. 3.18) можно записать:

Эти выражения тождественны лишь при равенстве слагаемых, как не зависящих от тока I ,так и пропорциональных ему. Поэтому

В обеих схемах сопротивление одинаково, а ЭДС и задающий ток источников связаны законом Ома.

3.5.4. Параллельное соединение активных ветвей

Воспользовавшись уже известными преобразованиями (переход от одной схемы к другой на рис. 3.19 по стрелкам), найдем:

тогда

В общем случае n параллельных ветвей

В числителе предпоследней формулы сумма алгебраическая: со знаком «плюс» записываются ЭДС тех источников, чьи стрелки направлены по отношению к узлам так же, как и ,со знаком «минус» – направленные в противоположную сторону.

3.5.5. Перенос источника ЭДС через узел (рис. 3.20)

Пусть тогда в исходной схеме Включим в каждую из ветвей одинаковые по величине ЭДСЕ , направленные от узла 4. При этом потенциалы узлов 2 и 3 не изменятся. В первой ветви две ЭДС скомпенсируют действие друг друга и их можно удалить. В эквивалентной схеме и т.е. изменился лишь потенциал узла 4, а ЭДС оказалась «вытесненной» из одной ветви во все остальные. Это преобразование удобно применять, когда в схеме есть активная ветвь без сопротивления. После него эта («особая») ветвь может быть устранена вместе с одним из узлов.

3.5.6. Перенос источника тока в контуре

В схеме рис. 3.21,а выделены две ветви с сопротивлениями и ,образующие с источником тока замкнутый контур. Включим последовательно с одним источником тока еще один такой же и подключим точку их соединения к узлу 3 (рис. 3.21,б). При этом мы не нарушили первый закон Кирхгофа и не изменили режим работы остальной части цепи(I = 0).

Заменим параллельное соединение источников токаJ с пассивной и активной ветвями последовательным соединением источниковЭДС с теми же сопротивлениями. Получим схему рис. 3.21,в, в которой действуют новые ЭДС и . По сравнению с исходной схемой удалось избавиться от одного («особого») контура. Токи в сопротивлениях этого контура после преобразования изменятся, а в остальной части схемы сохранят прежние значения.

Это преобразование легко распространить на любое число ветвей, образующих контур с источником тока.

3.5.7. Преобразование треугольника в звезду и обратно

Если в одной из ветвей треугольника есть источник ЭДС (рис. 3.23), то в лучах эквивалентной звезды, подключенных к тем же узлам, что и активная ветвь треугольника, появляются две ЭДС, пропорциональные их сопротивлениям:

где

что легко доказывается с помощью уже известных преобразований. Сопротивлениялучей эквивалентной звезды вычисляются так же, как и в случае с пассивными звездой и треугольником.

Направление стрелок эквивалентных ЭДС по отношению к узлам такое же, как и у ЭДС в ветвях треугольника.

Варианты с несколькими ЭДС сводятся к рассмотренному посредством переноса ЭДС через узел. Преобразование активной звезды в треугольник трудностей не представляет.

Необходимость в параллельном соединении источников питания (ИП) возникает обычно по одной из следующих причин:

Резервирование ИП для увеличения надежности работы радиоэлектронной аппаратуры;

Увеличение общей выходной мощности ИП.

Примеры для обоих случаев очевидны и известны из практики. Так, резервирование ИП применяют в военной технике, на конвейерных линиях, в железнодорожном и электротранспорте. В быту резервированием ИП можно назвать применение источников бесперебойного питания (ИБП) в устройствах охраны и сигнализации, а также в компьютерной технике. Увеличение выходной мощности

путем параллельного подключения ИП оправдано для питания мощной нагрузки, например радиопередатчика (трансивера) с максимальным током потребления более 20 А.

В большинстве случаев параллельное соединение источников требует реализации функции распределения тока между ними.

Защита источников без распределения тока

Такая защита часто необходима, когда требуется избежать нежелательной поломки электронных устройств вследствие отказа ИП. С этой целью соединяют два ИП в параллель способом, представленным на рис. 1.32.

Рис. 1.32. Способ параллельного соединения ИП

Допустим, ИП-2 настроен на более низкое выходное напряжение относительно ИП-1. Поэтому только первый источник питания PS1 поставляет ток в нагрузку, так как только его последовательный диод проводит ток.

Мощность на нагрузке создается только одним ИП, а не является удвоенной. Напряжение нагрузки равно напряжению источника питания минус падение напряжения на диоде (U„ – U n . uVD i)-

ИП-2 при этом находится в режиме ожидания под более низким напряжением и в случае прекращения работы ИП-1 вместо него поставляет ток в нагрузку.

При такой схеме соединения источников напряжение на нагрузке снижается при росте тока нагрузки (LOAD REGULATION), а паде-

ние напряжения на проводящем диоде растет по мере повышения тока («естественное распределение тока»).

Главным недостатком данной схемы является нестабильность напряжения на нагрузке. При изменении тока нагрузки (LOAD REGULATION) падение напряжения на диоде колеблется от О В без нагрузки до 0,6 В под нагрузкой.

Это падение напряжения уменьшает напряжение на нагрузке в зависимости от выходного тока. Поэтому эта конфигурация не используется при напряжениях ниже 12 В, когда падение напряжения на диоде составляет значительную долю от напряжения на выходе.

В этой схеме из-за отличия напряжений источников нет возможности применять корректирующие линии SENSE, так как ИП, настроенный на более низкое напряжение и находящийся в режиме ожидания, обнаружив в своих линиях SENSE повышенное по отношению к своей настройке напряжение, сразу прекратит процесс преобразования.

Защита источников с распределением тока

В этой схеме линии SENSE обоих источников подсоединены к нагрузке и между источниками питания включена линия распределе-

Для того чтобы при защите иметь стабильное напряжение на нагрузке, необходимо ввести «активное распределение тока» между ИП. При параллельном соединении источников добавляется специальная линия распределения тока, которая соединяет между собой соответствующие терминалы источников питания. Такое соединение выполняется по схеме на рис. 1.33.

Рис. 1.33. Схема с линией распределения тока

ния тока (PC). Каждый из источников питания отдает нагрузке половину своей мощности.

Источники должны быть настроены по напряжению как можно ближе друг к другу, а сопротивления соединительных проводов от каждого из источников к нагрузке должны быть равны друг другу.

Эта конфигурация позволяет соединять в параллель более ИП (N+1), когда дополнительно включается еще один резервный ИП, который в случае неисправности одного из источников начинает работать вместо отказавшего источника.

Принцип работы устройства с активным распределением тока

ИП на выходе контролирует напряжение путем сравнения напряжения, измеряемого на линиях SENSE, с внутренним эталонным напряжением. Для того чтобы источник мог эффективно делить ток с другим источником, он должен непрерывно получать информацию о своем токе и о токе другого источника. Эту информацию источник обрабатывает и использует во время контроля и регулирования выходного напряжения. При этом если ток источника слишком велик, его выходное напряжение начнет снижаться, и наоборот. Фактически поступает информация о разности токов двух источников, в случае положительной разности токов следует понизить напряжение источника, в случае отрицательной разности – повысить это напряжение. В это же время соседний источник питания получает информацию, обратную по знаку, и выполняет обратные действия. Так осуществляется балансировка токов источников.

При параллельном соединении более чем двух ИП число переменных, участвующих в процессе распределения тока между ними, велико (каждый источник нуждается в информации о своем токе и токе всех остальных). Поскольку каждый из источников осуществляет контроль и регулирование выходного напряжения и тока на основании всех переменных, то появляется опасность, что такой сложный контур регулирования может потерять стабильность, поэтому количество источников, включаемых параллельно по такой схеме соединения, ограничено.

Особенности электрической цепи

Фактически каждый источник питания представляет источник напряжения, зависящий от его тока. Положительный терминал выходного напряжения соединен с точкой контроля выходного напряжения, а отрицательный терминал выходного напряжения – с отрицательным терминалом выходного напряжения соседнего источника питания. Разность между V(I1) и V(I2) влияет на распределение напряжения между источниками так, что если она положительна, выходное напряжение первого источника должно падать, чтобы сохранять положение, когда точка контроля равняется эталонному напряжению.

Соединение для получения большей мощности

Для получения высокой мощности от двух ИП их соединение выполняется по схеме на рис. 1.34.

Рис. 1.34. Электрическая схема соединения двух ИП в параллель

В этой схеме, так же как и в предыдущей, ИП соединяются между собой линией распределения тока. Без активного распределения тока параллельное соединение источников не будет нормально функционировать из-за очевидной разницы выходных напряжений ИП. Вследствие этой разницы ИП с более высоким выходным напряжением выдает на выходе максимально возможный для него ток.

Подключение к мощной нагрузке приводит к тому, что в какой-то момент времени максимальный ток ИП оказывается недостаточен. При ограничении тока напряжение источника начинает снижаться.

Это заставит источник питания с более низким выходным напряжением поставлять необходимый остаток тока. При введении активного распределения тока необходимо следить за тем, чтобы общая мощность ИП была таковой, чтобы ни от одного из источников не требовалось более 90% от расчетного (для него) максимального тока.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!