Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Схемы автомобильных генераторов. Генератор переменного тока: принцип работы

Преобразование механической энергии в электрическую происходит при помощи генератора тока. В основном, практикуется использование вращающихся электромашинных генераторов. При вращении, в проводнике возникает электродвижущая сила под действием изменяющегося магнитного поля. Часть генератора, создающая магнитное поле, называется индуктором, а та часть, где образуется электродвижущая сила, носит название якоря.

Принцип действия

Вращающаяся часть генератора называется ротором, а его неподвижная часть является статором. Генератор переменного тока имеет статор и ротор, которые по своей конструкции могут быть одновременно якорем и индуктором.

Практически, всю электроэнергию на мировых электростанциях производят электрогенераторы переменного тока. При вращении индуктора, создается магнитное поле, которое вращается и наводит в обмотке статора переменную электродвижущую силу. Ее частота полностью совпадает с частотой вращения ротора.

Элементы генератора

В состав магнитной системы статора входят тонкие стальные листы, спрессованные в пакет. В пазах этого пакета размещается обмотка статора. Она включает в себя три фазы, сдвинутые относительно друг друга на одну третью часть периметра статора. Электродвижущие силы, индуцированные в обмотках фаз, так же сдвинуты между собой на 1200. Каждая фаза имеет обмотку, состоящую из катушек с множеством витков, соединяемых между собой параллельно или последовательно. Части катушек, выступающие из пазов, носят название лобовых соединений статора.

В индукторе и статоре, количество полюсов может быть и более двух. Количество полюсов полностью зависит от частоты вращения ротора. При замедлении вращения ротора может иметь возрастающее число полюсов.

Массивный стальной сердечник ротора содержит в себе обмотку возбуждения генератора. Данная конструкция применяется для электрогенераторов переменного тока, работающих с высокой частотой вращения. Это вызвано тем, что при высоких скоростях вращения, обмотка ротора подвержена действию больших центробежных сил. Большое количество полюсов предполагает наличие отдельной обмотки возбуждения у каждого полюса, что характерно для электрогенераторов, работающих на малых скоростях.

В гидротурбинах генераторы переменного тока могут иметь конструкцию с вертикальным расположением вала. При работе в зависимости от мощности, может применяться воздушное, водородное, водяное или масляное охлаждение.

Мироздание предоставило человечеству триллион способов получить электричество, каждый этап развития характеризуется собственными технологиями. Допустим, исторически первым считают генератор постоянного заряда Ван де Граафа. Неверная точка зрения. Люди пользовались прежде другими разновидностями. Сегодня рассмотрим устройство, принцип работы генератора переменного тока. Приступим.

Работа генераторов электрического тока

Принцип призван создать потенциал относительно Земли, считаемую нулем. Неправильно, но все в мире относительно. Хотя земная поверхность несет заряд, играет роль разница потенциалов меж клеммами генератора и почвой. Стоящий на грунте предмет обволакивается полем планеты, считаем постулат верным. Первым изобретен генератор постоянного тока. Скорее напряжения. Вольтаж получался фантастический, тока приборчик давал мало. Принцип действия прост:

Принцип действия генератора

  1. Лента трется, локально формируется заряд.
  2. Путем конвейерного механизма участок достигает токоснимателя.
  3. Проводимостью клеммы вида шара плотность уравнивается.

В результате сфера приобретает заряд, плотностью равный локальному ленты. Понятно, такие генераторы не слишком удобны, в 1831 году Майкл Фарадей создает нечто новое. Пользуясь намагниченной лошадиной подковой, вращающимся медным диском получил электричество по-иному: явлением магнитной индукции. Ток выходил переменный. Следовательно, поле перестало быть статическим, став электромагнитным. Поясним:

  • В природе часто встречаются заряды электричества положительного или отрицательного знака, никто не смог разыскать отдельно полюсы магнита.
  • Переменное электрическое поле вызывает соответствующий отклик эфира. Выражен продуцированием переменной магнитной составляющей в плоскости перпендикулярной исходной.

Процесс продолжается беспрерывно, называется электромагнитной волной. Осваивает свободное пространство прямолинейно, пока энергия затухает. Что касается проводов, электричество распространяется сравнительно просто. Но! Пока кабель снабжен оплеткой. Экран пропал, зануление (заземление) отсутствует - волна начинает излучаться. Эффект эксплуатируют беспроводные отвертки-индикаторы, помогают установить (локализовать) источники помех промышленной частоты 50 Гц. И если системный блок компьютера не заземлен, при помощи вещички можно легко исправить недочет.

Помогает проверить вредоносное излучение дисплеев. Частота 50 Гц легко излучается проводами. Аспект увеличивает расходы электростанций (потери), вредит здоровью граждан. Как возникает энергия в генераторе Фарадея? Объясняли школьные учителя: при вращении рамки в поле магнита индукция через площадь меняется, наводится электрический ток.

Механическая энергия движения преобразуется в электрическую. Догадались, человечество эксплуатирует:

  1. Падение с плотины вниз масс воды.
  2. Энергию пара тепловых, атомных электростанций.

Два главнейших механизма получения энергии. Электричество становится движение лопасти турбины генератора. Природа родила устройства, сжигающие дизельное топливо, керосин, принцип действия мало отличается. Разница ограничена мобильностью, скоростью вращения лопасти.

Выработка электрической энергии городов

Посмотрим устройство генератора тока ГЭС. Для накопления потенциальной энергии движимой руслом реки водами воздвигается плотина. Уровень вверх по течению быстро начинает подниматься. Чтобы избежать прорыва (любого типа), часть многотонной массы стравливается (кое-где ставят специальные шлюзы пропускать рыбу на нерест). Полезная часть течения проходит сквозь направляющий аппарат. Знакомые с устройством реактивных двигателей, поняли речь. Направляющим аппаратом называется конфигурация створок, изменением положения регулируется количество проходящей среды (водя).

Говорили в обзорах, регламентированы жесткие требования на частоту вырабатываемого электричества. Ученые просчитали: можно достичь при нынешнем уровне развития, применяя массивные лопасти, на которых не сказываются незначительные удары волн. Учитывается средняя масса проходящей воды, мелкие скачки скрадываются несусветной массой винта. Очевидно, имея весомые габариты, скорость вращения бессильна составить 50 Гц (3000 об/мин). Лопасть делает 1-2 об/мин.


Винт вращает ротор генератора. Движущаяся ось, усаженная обмотками возбуждения. Катушки, сквозь которые пропускается постоянный ток для создания устойчивого магнитного поля. Излучения не происходит, значение напряженности постоянное (см. выше). Наблюдены незначительные флуктуации, результат не отражается на сути процесса: валу образован несколькими вращающимися магнитами.

Возникает один тонкий момент: как получить частоту 50 Гц. Быстро пришли к выводу: выпрямлять переменный ток, после ставить инвертор обратного преобразования невыгодно. Вдоль статора расположили множество проволочных катушек (рамка из опытов Фарадея), в которых будет наводиться индукция. Путем правильной коммутации с генератора удается снять нужные 230 вольт (на деле стоят еще понижающие трансформаторы) с частотой 50 Гц. Генераторы дают три фазы, сдвинутые на 120 градусов. Возникает новый вопрос – обеспечить стабильность. Подавать дозированное количество воды, пока лопасть набирает скорость? Практически невозможно, поступают следующим образом:

  1. Помимо токосъемных катушек статоре содержит возбуждающие.
  2. Туда подается напряжение частоты, позволяющей лопасти набрать нужную скорость.
  3. Получается фактически громадный синхронный двигатель.

Начальный разгон нагоняется потоком воды, вспомогательное напряжение придерживает винт, пытающийся превысить заданную скорость. Вода фактически толкает махину, напряжение возбуждения послужит регуляции (понятно, на статор подается переменный ток). Требуется получить больше мощности, направляющий аппарат плотины чуть приоткрывается. Масса воды становится более солидной, обязательно сорвала бы обороты. Приходится увеличивать ток возбуждения статора, контролирующее поле становится сильнее, ситуация остается в нормальных пределах.


Двигатель внутреннего сгорания Катерпиллер, вращающий генератор

Мощность генератора возрастает. А напряжение, поддерживается уровень? По закону электромагнитной ЭДС Фарадея напряжение определено скоростью изменения магнитного поля, числом витков. Получается, конструктивно выбирая площадь катушек, длину кабеля, задаем выходное напряжение генератора. Разумеется, каждый должен иметь свою скорость вращения лопасти. Выдерживается током возбуждения ротора. При возрастании мощности увеличивается ЭДС. Рост тока возбуждения повышает скорость изменения магнитной напряженности поля.

Нужен способ поддержания прежних параметров. Зачастую становятся развязывающие трансформаторы с переменным коэффициентом передачи. Потребитель меняет ток, напряжение остается постоянным. Обеспечиваются заданные стандартами параметры. Устройство генератора переменного тока основано на возбуждении обмоток статора, остальное сводится к методикам регуляции параметров.

Регулировка параметром генераторов переменного тока

В простейшем случае мощность не поддается изменению. В бытовых (мелких генераторах) схема отслеживает напряжение, меняется значение тока возбуждения. Редко ситуация на руку потребителю. Расходуется солярка. Получается, тратится прежняя энергия, часть рассеивается пространством. Не страшно, когда возвращаем Земле часть скорости реки, жечь топливо задаром редкий скупец захочет.

Читатели поняли: могут сорваться обороты, если не уменьшить подачу воды, газа, пара – в общем, движущей силы. Отслеживает отдельная цепь регуляции, снабженная регулировочными механизмами. Частному дому более эффективно создать систему аккумуляторную, сегодня имеется возможность 12 вольтами постоянного тока питать освещение, ноутбуки, многие другие приборы. Сеть можно оборудовать отводом для периодического заряда батарей. Методик, как помним, две:


  1. С постоянным током. Напряжение варьируется, каждый час заряжается одна десятая емкости. Длительность процесса – 600 минут.
  2. С постоянным напряжением. Ток падает по экспоненте, вначале составит сравнительно большие величины. Главный недостаток методики.

Принцип действия генератора переменного тока позволит вести подзарядку аккумуляторов, руководствуясь необходимостью. Понятно, потребуется цепь гальванической развязки перед каскадом батарей. Можно догадаться из прочитанного, ГЭС применяют устройства с подстраиваемым коэффициентом трансформации. Методики реализации затеи могут быть разными:

  1. Широкое распространение получили трансформаторы с коммутируемыми обмотками. Число витков может меняться путем переключения контакторами цепей.
  2. Более плавный коэффициент обеспечивает скользящий контакт. Здесь витки одной катушки зачищены, токосъемник бегает взад-вперед, меняя число рабочих витков. Понятно, большой ток пропустить сложно, будет возникать искра, в случае ГЭС станет дугой. Скорее устройство регулирования сравнительно малых мощностей.

Из сказанного следует: ток возбуждения ротора ГЭС логично менять скачками в такт переключению обмоток регулирующего трансформатора. Затем следует плавная подстройка, параметры напряжения приходят в норму. Рассказали в общих чертах, как работает генератор переменного тока. Стоит отметить: конструкцией многообразие не исчерпано. Данный вид устройств составляет костяк семейства под названием синхронные генераторы переменного тока. Обеспечивают города, по большей части, энергией.

Асинхронный генератор переменного тока

Асинхронные генераторы отличаются отсутствием электрической связи меж статором и ротором. Скорость регулируется направляющим аппаратом. Сообразно стабильность частоты падает, амплитуда напряжения также носит непостоянный характер. В результате можно отметить относительную простоту конструкции асинхронного генератора переменного тока, стабильность параметров не блещет хорошими показателями.

Отличительной чертой назовем способность недостатков асинхронных двигателей плавно перекочевывать, заражая новые устройства. Очевидно, для снабжения потребителей энергией регулируют частоту тока, мощность получается случайной. Хотя если генератор находится в относительно постоянном окружении, сказанное не будет большой проблемой.

Прежде чем приступать к принципу работы электрогенератора , необходимо хоть немного разобраться с его устройством.


Бытовой электрический генератор состоит из двигателя (силового агрегата) и генератора - узел, преобразующий механическую энергию в электрическую. В бытовых миниэлектростанциях, чаще всего, применяются двигатели внутреннего сгорания - дизельные или бензиновые. Не стоит отдельно выделять газовые электрогенераторы, т.к. они - это доработанный бензиновый генератор.

Электрические генераторы бывают синхронными и асинхронными. Какие хуже, а какие лучше? Из всей литературы, которую мне удалось прочесть в Интернете по этому поводу, я пришел к следующему выводу:

Асинхронные электрогенераторы. Они более дешёвые. Данные генераторы обеспечивают поддержание напряжения в сети с высокой точностью, поэтому позволяют подключать к ним аппаратуру, чувствительную к перепадам напряжения (например, медицинское оборудование, другие электронные устройства). Подобные генераторы позволяют подключать к ним электроинструменты и электродвигатели с реактивной мощностью до 30% от номинала Это пожалуй их главные и единственный большие плюсы. Минус - данный генератор во время пуска потребляет кратковременно 1.5-3 кратную мощность. Асинхронный электрогенератор с трудом переносит пиковые перегрузки.

Синхронные генераторы выдают потребителю более качественное электричество, чем асинхронные. Также они способны переносить 3-х кратные пусковые перегрузки. В профессиональных и стационарных электростанциях устанавливаются только синхронные генераторы. Синхронные генераторы - менее точны, но, тем не менее, они пригодны для аварийного электропитания офисов, холодильных установок, оборудования загородных домов, дач, строительных объектов. Такие электрогенераторы без проблем справляются с энергоснабжением электроинструментов и электродвигателей с реактивной нагрузкой до 65% от своего номинала.

А что же из себя представляет электрогенератор?


Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение) в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один - Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор - это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется "реакцией якоря". Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком - возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы электростанции. Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции - возбуждение ЭДС во вращающемся проводнике.

Если к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан , являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора.

Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

Как любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.

В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

Генераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная . Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков).

Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.

Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Устройство и принцип работы генератора постоянного тока на видео

Это такой тип электрической машины, которая способствует преобразованию механической энергии в электрическую. Основано действие генераторов тока по принципу электромагнитной индукции: электродвижущая сила (ЭДС) наводится в движущемся в магнитном поле проводе.

Производить генератор тока может не только постоянный, но и переменный ток. На латыни слово генератор (generator) означает - производитель.

На мировом рынке наиболее известными поставщиками генераторов являются компании: General Electric (GE), ABB, Siemens AG, Mecc Alte.

Генераторы постоянного тока.

Единственным типом источника для получения электроэнергии на протяжении долгого времени были электрические генераторы .

Переменный ток индуктируется в обмотке якоря генератора постоянного тока , затем он электромеханическим выпрямителем - коллектором преобразуется в постоянный ток. Особенно при большой частоте вращения якоря генератора, процесс выпрямления тока коллектором связан с очень частым износом щеток и коллектора.


Различаются генераторы постоянного тока по характеру их возбуждения, они бывают с самовозбуждением и независимого возбуждения. К независимому источнику питания в генераторах с электромагнитным возбуждением подключается обмотка возбуждения, располагающаяся на главных полюсах.

Постоянными магнитами, из которых производятся полюсы машины, возбуждаются генераторы с магнитоэлектрическим возбуждением. Основное применение генераторы постоянного тока находят в тех отраслях промышленности, где постоянный ток является предпочтительным по условиям производства (предприятия электролизной и металлургической промышленности, суда, транспорт и прочие). В качестве источников постоянного тока и возбудителей синхронных генераторов применяются генераторы постоянного тока на электростанциях.

Может достигать до 10 Мегаватт мощность генератора тока .

При достаточно высоком напряжении получать большие токи позволяют генераторы переменного тока . Несколько типов индукционных генераторов различают в настоящее время.

Они состоят из создающего магнитное поле постоянного магнита или электромагнита и обмотки, индуцируется в которой переменная ЭДС. Так как складываются наводимые в последовательно соединенных витках ЭДС, то в рамке индукции амплитуда ЭДС будет пропорциональна количеству в ней витков. Также она пропорциональна через каждый виток амплитуде переменного магнитного потока. В генераторах тока , чтобы получить большой магнитный поток применяется специальная магнитная система, состоящая из двух сердечников, изготовленных из электротехнической стали. В пазах одного из сердечников размещены создающие магнитное поле обмотки, а в пазах второго располагаются обмотки, в которых индуцируется ЭДС. Один из сердечников называется ротором, так как он вращается вокруг вертикальной или горизонтальной оси, вместе со своей обмоткой.


Другой сердечник называется статором - это неподвижный сердечник с его обмоткой. Как можно меньшим делается зазор между сердечниками ротора и статора, наибольшее значение потока магнитной индукции обеспечивается этим. Электромагнит, являющийся ротором вращается в больших промышленных генераторах , а обмотки, уложенные в пазах статора и в которых наводится ЭДС остаются неподвижными.

С помощью скользящих контактов приходится во внешнюю цепь подводить ток к ротору или отводить его из обмотки ротора. Контактными кольцами, которые присоединены к концам его обмотки для этого снабжается ротор. К кольцам прижаты неподвижные пластины-щетки, они осуществляют связь с внешней цепью обмотки ротора. В обмотках создающего магнитное поле электромагнита, сила тока значительно меньше той силы тока, которую отдает генератор тока во внешнюю цепь. Поэтому гораздо удобнее снимать генерируемый ток с неподвижных обмоток, а сравнительно слабый ток подводить через скользящие контакты к вращающемуся электромагниту. Вырабатывается этот ток, расположенным на том же валу отдельным генератором постоянного тока (возбудителем). Вращающимся магнитом создается магнитное поле в маломощных генераторах тока, щетки и кольца в таком случае вообще не требуются.


Бывают двух типов обмотки возбуждения синхронных генераторов: с явнополюсными и неявнополюсными роторами. Выступают из индуктора несущие обмотки возбуждения в генераторах с явнополюсными роторами полюса. На сравнительно низкие частоты вращения рассчитаны генераторы данного типа, они используются для работы с приводом от поршневых паровых машин, гидротурбин, дизельных двигателей. Для привода синхронных генераторов с неявнополюсными роторами применяются газовые и паровые турбины. Стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполнены в виде медных пластин, представляет собой ротор такого генератора. В пазах фиксируются витки, а для снижения потерь мощности и уровня шума, связанных с сопротивлением воздуха шлифуется, а затем полируется поверхность ротора.

По большей части трехфазными делаются обмотки генераторов тока . Подобное сочетание движущихся частей, способных создавать энергию также экономично и непрерывно, встречается в механике редко.

Современный генератор тока является внушительным сооружением, состоящим из медных проводов, стальных конструкций и изоляционных материалов. С точностью до 1 миллиметра изготавливаются важнейшие детали генераторов, которые сами имеют размеры несколько метров.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!